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Note:
Chapter 10 of the Hayt & Buck book has a thorough discussion of 
transmission lines in the time domain.  

Transmission lines is the subject of Chapter 6 in the Shen & Kong 
book. However, the subject of wave propagation in the time domain
is not treated very thoroughly there. 

Note about Books
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A transmission line is a two-conductor system that is used to 
transmit a signal from one point to another point.

Transmission Lines

Two common examples:

Coaxial cable Twin lead

A transmission line is normally used in the balanced (or “differential”) mode, 
meaning equal and opposite currents (and charges) on the two conductors.

rε a
b

z
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Transmission Lines (cont.)

Coaxial cable

Here’s what they look like in real-life.

Twin lead
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Transmission Lines (cont.)

CAT 5 cable
(twisted pair)
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Transmission Lines (cont.)

Some practical notes:

 Coaxial cable is a perfectly shielded system (no interference).

 Twin line is not a shielded system – more susceptible to noise and 
interference.

 Twin lead may be improved by using a form known as “twisted pair” (e.g., 
CAT 5 cable). This results in less interference.

Coax Twin lead
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A common transmission line for printed circuit boards:

Microstrip line

Transmission Lines (cont.)
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( a “planar” transmission line)



Transmission lines are commonly met on printed-circuit boards.

A microwave integrated circuit (MIC)

Microstrip line

Transmission Lines (cont.)
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Microstrip line

Transmission Lines (cont.)
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Planar transmission lines commonly met on printed-circuit boards

Transmission Lines (cont.)

Microstrip

w

hrε

Stripline

w
hrε

Coplanar strips
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Coplanar waveguide (CPW)

w

hrε
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Symbol (schematic) for transmission line:

Note: 
We use this schematic to represent a general transmission line, no matter what the 

actual shape of the conductors (coax, twin lead, etc.).
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Transmission Lines (cont.)

+
-( ),v z t

( ),i z t

z

Note: 
The current on the bottom conductor is always assumed to be equal and opposite 

to the current on the top conductor (but often we do not label the current on the 
bottom conductor, for simplicity).



4 parameters

C = capacitance/length [F/m]

L = inductance/length [H/m]

R = resistance/length [Ω/m]

G = conductance/length [S/m]

Four fundamental parameters that characterize any transmission line:

These are “per unit length” parameters.

Capacitance between the two wires

Inductance due to stored magnetic energy

Resistance due to the conductors

Conductance due to the filling material 
between the wires
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Transmission Lines (cont.)

z



Circuit Model

Circuit Model:
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+
-( ),v z t

( ),i z t

z z∆

R z∆ L z∆

G z∆ C z∆

z∆
z

Note: The order of the elements is 
not important, as long as we keep 

the R and L as series elements and 
the G and C as parallel elements.



Coaxial Cable

Example (coaxial cable)
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rε a
bz

0 mµ µ=Usually

µm = permeability of metal [H/m]

(cooper or aluminum)

0 dµ µ=Usually
(e.g., Teflon)



Coaxial Cable (cont.)

Overview of derivation: capacitance per unit length

1QC
V z V

ρ
= =

∆
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Assume static fields

More details can be found in 
ECE 3318, Notes 25.
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sρ Gauss’s law



Overview of derivation: inductance per unit length
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Coaxial Cable (cont.)

Assume static fields

More details can be found in 
ECE 3318, Notes 31.

(current flowing in z direction 
on inner conductor)

Ampere’s law
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Overview of derivation: conductance per unit length
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Coaxial Cable (cont.)

dσ

a
b

More details can be found in 
ECE 3318, Notes 27.



Relation Between L and C:

[ ] [ ]0 02 F/m ln H/m
2ln

r r bC L
b a
a

πε ε µ µ
π

 = =     
 
 

0 0r rLC µ µ ε ε µε= =

Speed of light in dielectric medium: 
0 0

1 1 1
d

r r r r

cc
µε µ ε µ ε µ ε

= = =

2

1

d

LC
c

=Hence: This is true for ALL transmission lines.
( A proof will be seen later.)
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Coaxial Cable (cont.)

[ ]82.99792458 10 m/sc ≡ ×



Telegrapher’s Equations
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 These are a fundamental set of differential equations that 
describe how voltage and current propagate (travel) on a 
transmission line. 

 The derivation holds for any type of transmission line.

 The equations are exact, showing how any type of signal 
propagates on a transmission line.

 We only have an exact solution for the telegrapher’s equations 
in the time domain for a lossless transmission line. 



Telegrapher’s Equations (cont.)
Apply KVL and KCL laws to a small ∆z slice of line:

( , )KVL : ( , ) ( , ) ( , )

( , )KCL : ( , ) ( , ) ( , )

i z tv z t v z z t i z t R z L z
t

v z z ti z t i z z t v z z t G z C z
t

∂
= + ∆ + ∆ + ∆

∂
∂ + ∆

= + ∆ + + ∆ ∆ + ∆
∂
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z

R z∆ L z∆

G z∆ C z∆

( ),i z z t+ ∆( ),i z t

( ),v z t ( ),v z z t+ ∆

+

-

+

-

z z+ ∆z



Hence

( , ) ( , ) ( , )( , )

( , ) ( , ) ( , )( , )

v z z t v z t i z tRi z t L
z t

i z z t i z t v z z tGv z z t C
z t

+ ∆ − ∂
= − −

∆ ∂
+ ∆ − ∂ + ∆

= − + ∆ −
∆ ∂

Now let ∆z → 0:

v iRi L
z t
i vGv C
z t

∂ ∂
= − −

∂ ∂
∂ ∂

= − −
∂ ∂

“Telegrapher’s Equations (TEs)”

Telegrapher’s Equations (cont.)
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To combine these, take the derivative of the first one with 
respect to z:

2

2

2

2

v i iR L
z z z t

i iR L
z t z

v v vR Gv C L G C
t t t

∂ ∂ ∂ ∂ = − −  ∂ ∂ ∂ ∂ 
∂ ∂ ∂ = − −  ∂ ∂ ∂ 

 ∂ ∂ ∂ = − − − − − −  ∂ ∂ ∂   

 Take the derivative of the first TE with respect to z.

 Substitute in from the second TE.

i vGv C
z t
∂ ∂

= − −
∂ ∂
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Telegrapher’s Equations (cont.)



( )
2 2

2 2( ) 0v v vRG v RC LG LC
z t t

 ∂ ∂ ∂
− − + − = ∂ ∂ ∂ 

The same equation also holds for i.

Hence, we have:

2 2

2 2
v v v vR Gv C L G C

z t t t
 ∂ ∂ ∂ ∂ = − − − − − −  ∂ ∂ ∂ ∂   

There is no exact solution to this differential equation, except for 
the lossless case. Hence, we will assume lossless transmission 
lines in the time domain.
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Telegrapher’s Equations (cont.)

Note: The current satisfies the same differential equation.



( )
2 2

2 2
( ) 0v v vRG v RC LG LC

z t t
∂ ∂ ∂ − − + − = ∂ ∂ ∂ 

Lossless case:

2 2

2 2
0v vLC

z t
∂ ∂ − = ∂ ∂ 

0R G= =
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Telegrapher’s Equations (cont.)

2
1

d

LC
c

µε= =Recall :



2 2

2 2 2
1

d

v v
z c t

 ∂ ∂
=  ∂ ∂ 

General Solution for the lossless case:

Solution:

( ) ( ) ( ), / /
d d

v z t f t z c g t z c= − + +

where (F , G) and (f, g) are arbitrary functions.

Solution to Telegrapher's Equations

This is called the “D’Alembert solution” to the wave equation 
(the solution is in the form of traveling waves).
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“wave equation”

( ) ( ) ( ),
d d

v z t F z c t G z c t= − + +
or



General Solution for the lossless case:

( ) ( ) ( ), / /
d d

v z t f t z c g t z c= − + +

Solution to Telegrapher's Equations

26

( ) ( ) ( ),
d d

v z t F z c t G z c t= − + +
or

Form (1): Useful when plotting the voltage vs. distance z for different times.

Form (2): Useful when plotting the voltage vs. time t for different distances.

(1)

(2)



Traveling Waves

2 2

2 2 2
1

d

v v
z c t

 ∂ ∂
=  ∂ ∂ 

( ) ( ) ( ), d dv z t F z c t G z c t= − + +

Proof of solution (Form (1)):

( ) ( ) ( )

( ) ( ) ( ) ( )

2

2

2
2 2

2

,

,

d d

d d d d

v z t
F z c t G z c t

z
v z t

c F z c t c G z c t
t

∂
′′ ′′= − + +

∂
∂

′′ ′′= − − + +
∂

It is seen that the differential equation is satisfied by the general solution.

General solution:
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(A similar proof applies for form 2.)



Example
(rectangular pulse):

( ) ( ), dv z t F z c t= −

Traveling Waves (cont.)

“snapshots of the wave”
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dc

( , )v z t 0t = 1 0t t= > 2 1t t t= >

0z 0 1dz c t+ 0 2dz c t+

z

The waveform is shifted to the right by ∆z = cd t

( ),0v z 0t =

z
0z

( ) ( ),0v z F z=



( ) ( ), dv z t G z c t= +

Example
(square pulse):

“snapshots of the wave”
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Traveling Waves (cont.)

dc

( , )v z t 0t =1 0t t= >2 1t t t= >

0z0 1dz c t−0 2dz c t−

z

The waveform is shifted to the left by |∆z| = cd t

( ),0v z 0t =

z
0z

( ) ( ),0v z G z=



Loss causes an attenuation in the signal level, and it also causes distortion 
(the pulse changes shape and usually gets broader).

(These effects can be studied numerically.)
30

Effects of Loss

z

( ),v z t 0t =
1 0t t= > 2 1t t t= >

0z 0 1dz c t+ 0 2dz c t+
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Example: Propagation on a lossy microstrip line

[ ] ( )
[ ]
[ ] ( )

[ ]7

2.33
tan 0.001

0.787 mm 31mils
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0.0175 mm

3.0 10 S/m

r
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h

w

t

ε
δ

σ

=
=

=

=

=

= ×

"half oz" copper cladding

 

TOP VIEW 

z

wx

Probe

 

rε

SIDE VIEW 

t

h
z

y

( )sv t+
−

Coax

Probe

[ ]10
0 0.5 10 st −= ×

t

( )gv t

0t

1.0

Effects of Loss (cont.)

(From ECE 5317)

Input signal:
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Example: Propagation on a microstrip line

Effects of Loss (cont.)

[ ] ( )
[ ]
[ ] ( )

[ ]7

2.33
tan 0.001

0.787 mm 31mils

2.35 mm

0.0175 mm

3.0 10 S/m

r

m

h

w

t

ε
δ

σ

=
=

=

=

=

= ×

"half oz" copper cladding

[ ]1 cmz = [ ]20 cmz =

[ ]100 cmz =



Current

v iRi L
z t
∂ ∂

= − −
∂ ∂

v iL
z t
∂ ∂

= −
∂ ∂

Lossless

( ) ( ) ( ), d dv z t F z c t G z c t= − + +

( ) ( ) ( ),
d d

v z t
F z c t G z c t

z
∂

′ ′= − + +
∂

( ) ( ) ( ), d di z t U z c t V z c t= − + +

( ) ( ) ( ),
d d d d

i z t
c U z c t c V z c t

t
∂

′ ′=− − + +
∂

(First Telegrapher’s equation)

Our goal is to now solve for the current on a lossless line.

Assume the following forms:

The derivatives are:
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Current (cont.)

( ) ( ) ( ) ( )d d d d d dF z c t G z c t L c U z c t c V z c t′ ′ ′ ′− + + = − − − + +  

v iL
z t
∂ ∂

= −
∂ ∂

( ) ( )d d dF z c t L c U z c t′ ′− = − − −  

( ) ( )d d dG z c t L c V z c t′ ′+ = − +  

( ) ( )

( ) ( )

1

1

d d
d

d d
d

U z c t F z c t
Lc

V z c t G z c t
Lc

− = −

+ = − +

This becomes

Equating like terms, we have:

Integrating both sides, we have:

Note:
There may be a constant of 
integration, but this would 

correspond to a DC current, 
which is ignored here.
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1 1
d

LLc L L
CLCµε

   = = =   
  

Then we have:

( ) ( )

( ) ( )
0

0

1

1

d d

d d

U z c t F z c t
Z

V z c t G z c t
Z

− = −

+ = − +

Define the characteristic impedance Z0 of the line:

0
LZ
C

= The units of Z0 are Ohms.

Observation about term:
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Current (cont.)
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Current (cont.)

( ) ( )

( ) ( )
0

0

1

1

d d

d d

U z c t F z c t
Z

V z c t G z c t
Z

− = −

+ = − +

( ) ( ) ( ), d di z t U z c t V z c t= − + +

( ) ( ) ( )
0

1, d di z t F z c t G z c t
Z

= − − +  

Recall that

From the last slide:

Hence, we have the current as



Summary of the general 
solution for a lossless line:

( ) ( ) ( ), d dv z t F z c t G z c t= − + +

( ) ( ) ( )
0

1, d di z t F z c t G z c t
Z

= − − +  

 For a forward wave, the current waveform is the same as the 
voltage, but reduced in amplitude by a factor of Z0.

 For a backward traveling wave, there is a minus sign as well.
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Current (cont.)

[ ]1 m/sdc
LC

= [ ]0
LZ
C

= Ω



Picture for a forward-traveling wave:

( ) ( )

( ) ( )
0

,
1,

d

d

v z t F z c t

i z t F z c t
Z

+

+

= −

= − Forward-traveling wave

( )
( ) 0

,
,

v z t
Z

i z t

+

+ =
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Current (cont.)

+

-
( ),v z t+

( ),i z t+

z



Physical interpretation of minus sign for the backward-traveling wave:

( ) ( )

( ) ( )
0

,
1,

d

d

v z t G z c t

i z t G z c t
Z

−

−

= +

= − + Backward-traveling wave

( )
( ) 0

,
,

v z t
Z

i z t

−

− =−
( )
( ) 0

,
,

v z t
Z

i z t

−

− =
−
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Current (cont.)

The minus sign arises from the reference direction for the current.

+

-
( ),v z t−

( ),i z t−( ),i z t−− z



Coaxial Cable

Example: Find the characteristic impedance of a coax.

[ ]

[ ]

0

0

2 F/m
ln

ln H/m
2

rC
b
a

bL
a

πε ε

µ
π

=
 
 
 

 =  
 

0

0
0

ln
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ln
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b
L aZ
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b
a

µ
π
πε ε

 
 
 = =

 
 
 

0
0

0

1 1 ln
2 r

bZ
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µ
π ε ε

 =  
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Coaxial Cable (cont.)

[ ]0 0
1 1 ln

2 r

bZ
a

η
π ε

 = Ω 
 

0
0

0

µη
ε

=

[ ]0 376.7303η Ω

-12
0

-7
0

 8.8541878 10  [F/m]

= 4 10  [H/m] ( )µ

ε

π

×

×



exact

(intrinsic impedance of free space)
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Twin Lead

[ ]1
0 0

1 1 cosh
2r

dZ
a

η
π ε

−  = Ω 
 

[ ] [ ]10 0

1
F/m cosh H/m

2cosh
2

r dC L
d a
a

πε ε µ
π

−

−

 = =     
 
 

[ ]0 0
1 1 ln

r

dZ
a

a d

η
π ε

 ≈ Ω 
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rε

d

a = radius of wires



Twin Line (cont.)

Coaxial cable

[ ]0 300Z = Ω

Twin lead

[ ]0 75Z = Ω

These are the common values used for TV.

75-300 [Ω] transformer

300 [Ω] twin lead 75 [Ω] coax
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Note: In microwave work, the most common value is Z0 = 50 [Ω].



Microstrip Line

0

0

,

,

r
wC w h
h

hL w h
w

ε ε

µ

≈

≈





0 0
1 ,

r

hZ
w

w h

η
ε

≈



Parallel-plate formulas:
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h

w

rε
0µ µ=

2
1

d

LC
c

µε= =Recall :



Microstrip Line (cont.)

More accurate CAD formulas (from ECE 5317):

( ) ( )( )0
120

/ 1.393 0.667 ln / 1.444eff
r

Z
w h w h

π

ε
=

 ′ ′+ + + 

( )
1 1 11 /

2 2 4.6 /1 12 /
eff r r r
r

t h
w hh w

ε ε εε
 + − −      = + −        +   

( / 1)w h ≥

( / 1)w h ≥

Note: The effective relative permittivity accounts for the fact that some of the fields are outside 
of the substrate, in the air region. The effective width w' accounts for the strip thickness.  

21 lnt hw w
tπ

  ′ = + +     

45

t = strip thickness
h

w

rε
0µ µ=



Some Comments

 Transmission-line theory is valid at any frequency, and for any type of 
waveform (assuming an ideal straight length of transmission line). 

 Transmission-line theory is perfectly consistent with Maxwell's 
equations (although we work with voltage and current, rather than 
electric and magnetic fields).

 Circuit theory does not view two wires as a “transmission line”: it 
cannot predict effects such as signal propagation, reflection, 
distortion, etc.
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Some Comments

 One thing that transmission-line theory ignores is the effects of discontinuities
(e.g., bends or nearby obstacles). These may cause reflections and possibly 
also radiation at high frequencies, depending on the type of line. 

47

Bend

Incident

Reflected

Transmitted
Incident Pipe

Reflected

h

Radiation

Transmitted

Coax Twin Lead
(cannot radiate) (can radiate*)

*Twisted pair minimizes this radiation.



Summary Page
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( ) ( ) ( ), d dv z t F z c t G z c t= − + +

( ) ( ) ( )
0

1, d di z t F z c t G z c t
Z

= − − +   [ ]1 m/sdc
LC

=

[ ]0
LZ
C

= Ω

( ) ( ) ( ), / /
d d

v z t f t z c g t z c= − + +

( ) ( ) ( )
0

1, / /d di z t f t z c g t z c
Z

= − − +  

or

F or f = wave going in +z direction. G or g = wave going in -z direction.

Lossless Line
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