ECE 3317Applied Electromagnetic Waves

Final Exam

Dec. 7, 2023

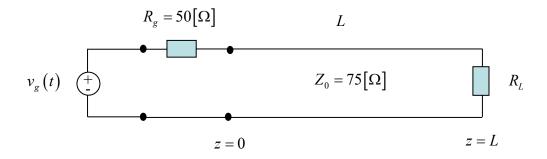
General Information:

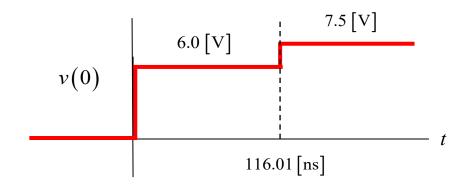
The exam is open-book and open-notes. You are not allowed to use any device that has communication functionality (laptop, cell phone, ipad, etc.).

Instructions:

- Show all of your work. No credit will be given if the work required to obtain the solutions is not shown.
- Write neatly. You will not be given credit for work that is not easily legible.
- Leave answers in terms of the parameters given in the problem.
- Show units in all of your final answers.
- Circle your final answers.
- Double-check your answers. For simpler problems, partial credit may not be given.
- If you have any questions, ask the instructor. You will not be given credit for work that is based on a wrong assumption.
- Make sure you sign the academic honesty statement below.

Academic Honesty Statement

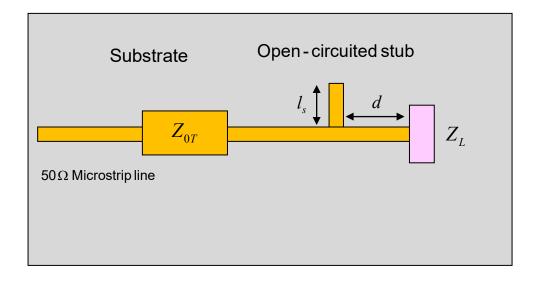

By tak	ing this	exam,	you agr	ee to a	bide	by th	ne UH	Acade	mic	Honesty	/ Poli	cy dur	ing t	his
exam.	You u	ndersta	nd and	agree	that	the	punish	ment f	for v	riolating	this	policy	will	be
most s	severe,	includin	g gettin	g an F	in the	e cla	ss and	getting	g ex	pelled fr	om th	ne Uni	versi	ity.


Signature:	

Problem 1 (25 pts)

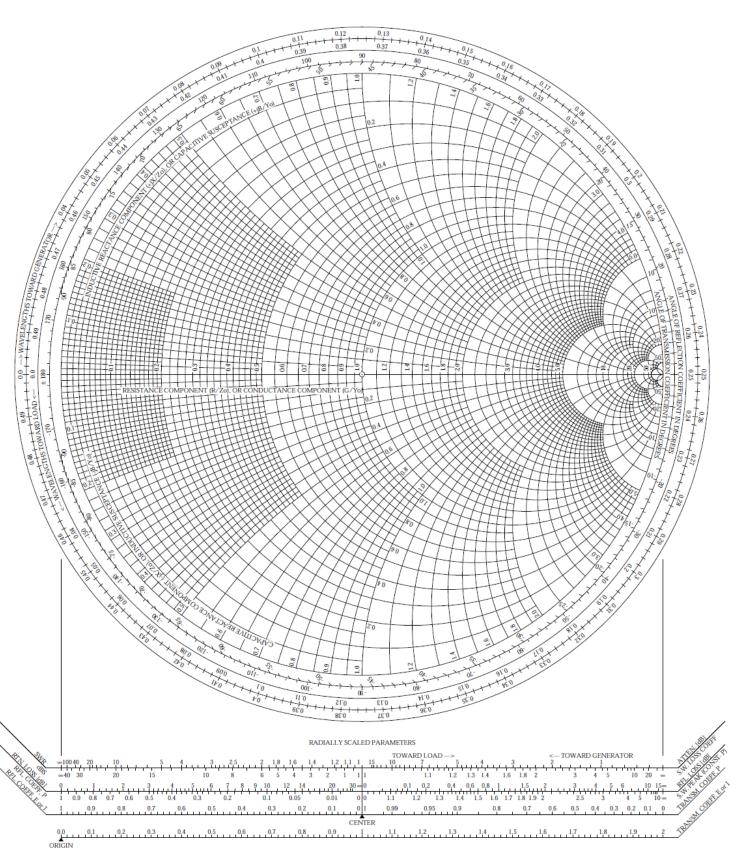
A TDR (time-domain reflectometer) has a generator voltage $v_g(t)$ that is a step function with an amplitude of V_0 volts. The TDR has a 50 $[\Omega]$ Thévenin impedance. The TDR is connected to a transmission line with a characteristic impedance of 75 $[\Omega]$. At the end of the line there is a load R_L . The transmission line is a coax that has a Teflon filling (with a relative permittivity of 2.1). The TDR records the total voltage v(0) at z = 0, and this is shown in the plot below.

- (a) What is the length of the line *L* in meters?
- (b) What is the amplitude V_0 of the step function $v_g(t)$?
- (c) What is the load resistance R_L ?

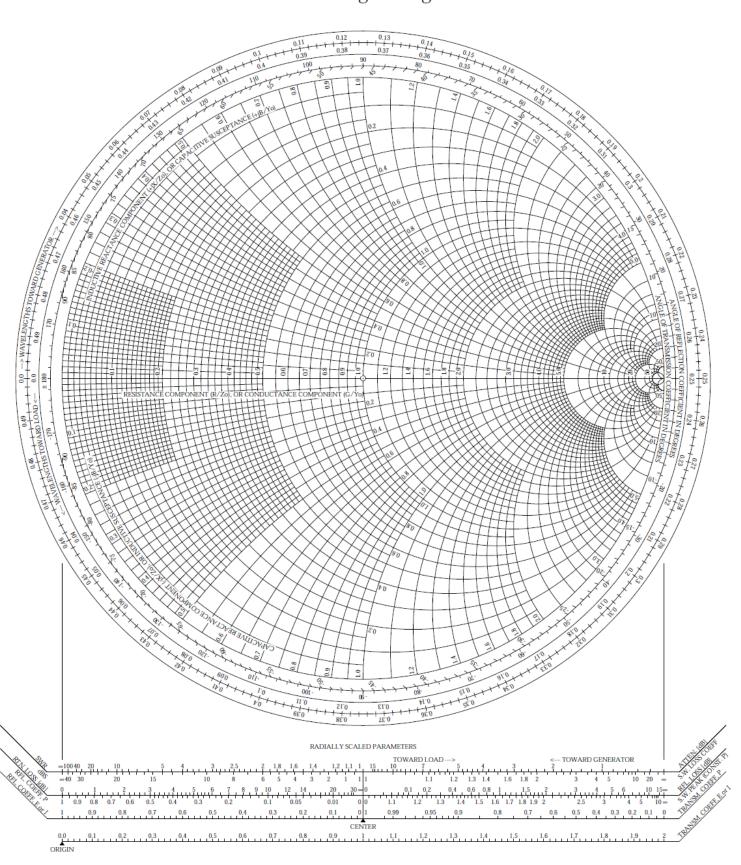


Problem 2 (25 pts)

A device (load) on a printed circuit board has an input impedance of $Z_L = 100 + j50$ [Ω]. We want to match the load to an incoming 50 [Ω] microstrip feed line. To do this we put an open-circuited stub in parallel with the main feed line at a distance $d = 0.15\lambda_g$ from the load. The stub has a length of l_s and also has a characteristic impedance of 50 [Ω]. A quarter-wave transformer is then placed at a distance of $\lambda_g / 2$ from the stub.

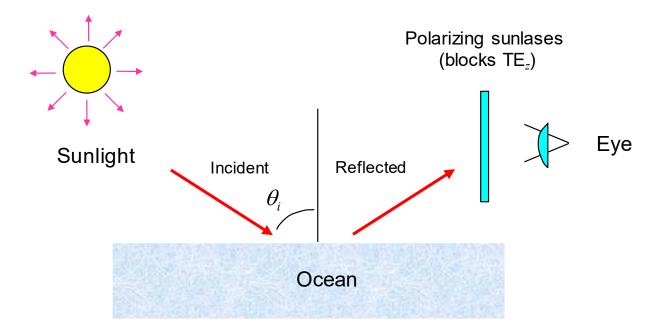

The frequency is 5 [GHz] and the relative effective permittivity of the microstrip lines is 1.75.

- a) What is the normalized input admittance just to the right of the stub? Use the <u>first</u> Smith chart on the next pages.
- b) Design the stub length l_s in terms of λ_g . Use the <u>second</u> Smith chart on the next pages.
- c) Find the value of λ_g in mm.
- d) Find value of the transformer characteristic impedance Z_{0T} .

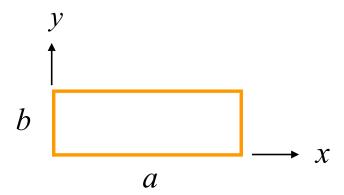

The Complete Smith Chart

Black Magic Design

The Complete Smith Chart


Black Magic Design

Problem 3 (25 pts)


Sunlight is incident on the ocean, which at optical frequencies is assumed to be lossless (and nonmagnetic) with a relative permittivity of 1.7689. The sunlight is randomly polarized, so that it has equal power densities in the TM_z and TE_z parts. The incident angle θ_i is 60°. The sunlight reflects off of the ocean and then goes through polarizing sunglasses to reach a person's eyes. The polarizing sunglasses allow the TM_z polarization to go through, but they block the TE_z polarization.

Find the percentage of the incident power density that makes it through the sunglasses, after reflecting off the ocean.

Problem 4 (25 pts)

- a) Design the dimensions a and b of an air-filled rectangular waveguide that is to be used for transmission of electromagnetic power at 6.0 [GHz]. This frequency should be at the center of the operating frequency band, which is the frequency band over which only the TE_{10} mode can propagate. Choose the height b of the waveguide so that it can carry maximum power without sacrificing the bandwidth of the operating frequency band.
- b) Find the power in watts that the waveguide can carry at 6.0 [GHz] if the magnitude of the electric field inside the waveguide is not allowed to exceed a value of $E_c = 3.0 \times 10^6$ [V/m] (the breakdown field strength of air at normal atmospheric pressure).

Bonus Problem (20 pts)

A CubeSat satellite orbits the Earth as shown below. It radiates at 3.0 GHz with 2 [W] of power that is input to a dipole antenna that has a gain of G = 1.5. A student on earth receives the signal from the CubeSat using a Yagi antenna that has a gain of G = 30. The receive antenna (the Yagi) has an input impedance of 50 [Ω] and is connected to a receiver that is modeled as a 50 [Ω] load. The CubeSat is at an altitude of 350 [km]. Both antennas may be assumed to be lossless.

- a) Calculate the power received by the receiver circuit that is connected to the Yagi antenna.
- b) Calculate the magnitude of the open-circuit (Thévenin) signal voltage of the Yagi antenna.

A CubeSat orbiting the Earth.