## ECE 2100



## ECE 2100

Measurements basics
PROF. HAN Q. LE

How deep is the water here?

what is the temperature?


## and here?




## What is measurement?



## Why mea surement?





Henry Cavendish with the famous torsion balance experiment that determined the gravitational constant $G$ and demonstrated Newton's inverse-square law of gravitation. Large lead spheres placed close to small ones caused angular deflections


## without mea surement, we would not have science

Methodic al mea surement is the foundation of empiricism

## How to do measurement?



## Some lab demonstration

## What the Body Can Perceive

coarse chemical sensor
ultrafine chemical sensor

Smell

The most amazing signal processing, pattem classific ation, lea ming processor

Touch \& Feel
pressure, LF vibration (tactile), chemical, temperature sensor


Hean

Have we met before? Direct connections between brain a reas responsible forvoice, face recognition


Human brain facial recognition (measurement: mapping optical sensing information into category: a classífication) is so effortless compared to computation algorithm.


## Demo with sound




Humanoid robots employ state of the art electronios and microprocessors and even cloud computing Al just to mimic some very basic
human capabílities
this is what ECE 2100 for
in the long run

- Measuring/sensingin itselfis the ultimate objective
The ultimate objective is information
- More precisely, information with consequence

More demo of far simpler and common measurements

Yes, you do measurements all the time: taking picture is a measurement


Here is what you measure when taking a selfie or a picture


Accuracy and precision


Imagine you go to a showroom and step on these scales for sale. All are precise down to 0.1 lb . But they give readings differing by 10 's lbs as above! What can you say?

At least 3 , if not all are wrong. This means they are precise, but terribly inaccurate. (Well, may be the first one is the correct one?)

Inaccuracy in instruments - especially high precision, are usually caused by erroneous calibration or some incorrectly adjusted bias.

In empincal science, accuracy is defined as the degree that a mea surement is close to the true value rela tive to uncerta inty.
Simila rly in computing, accuracy is determined by the magnitude of error: the disc repancy between a calculation a nd the known correct value (via a nalytical knowledge).

## UNIVERSITY of HOUSTON App by Han Q. Le ©

ECE 3340- APP 1.0.3.1 Accuracy and precision - Illustration 1


Click open this APP for demo

The most common a nd simplest type of mea surements is to map a physical entity of interest into a real number (is it real or rational - we'll see later on this).

- for example, the volta ge is 2.21 Volt, the current is $10 \mathrm{~mA} .$. .


When measurement is to obta in a number, it is essential to understa nd how a number is represented

# Mantissa and Exponent 

 SCIENTIFIC REPRESENTATION OF NUM BERS|  | mass (kg) ${ }^{\prime}$ | mass (kg) , |
| :---: | :---: | :---: |
|  | $1.989 \times 18^{30}-2$ | $1,989000,000000,000000,000000,000000$. |
|  | $\begin{gathered} 1 \\ 5.972 \times 10^{24} \\ 1 \\ 1 \end{gathered}$ | 5,972000,000000,000000,000000. |
|  | $\begin{array}{r} 1 \\ 65! \\ 1 \end{array}$ | 65. |
| (1) (1) | $\text { 1. } \ddagger 726219 \times 10^{-27}$ | 0.0000000000000000000000000016726219 |
|  |  | 0.000000000000000000000000000000910938356 |
| $0$ | $5.7 \times, 10^{-37}$ | 0.00000000000000000000000000000000000057 |

electron mass and sun mass are 60 orders of magnitude different. But relatively speaking, which mass do we know "better" or more prec 'se?
which tool would we want to use to measure this diamond?


The caliper has higher precision, as it can give us a finer, or more-digit reading of the size: precision means the ability to give high resolution, more sig nific a nt dig it rea ding.


We know the electron mass with more precision than the Sun mass: The number of signific a nt digits (with respect of mea surement uncertainty) of the mantissa is the deteminant of precision. The exponent is not relevant.

## Example of an APP to record infomation



- Fluctuation and uncertainty are funda mental to nature
- Qua ntum fluctuation, qua ntum noise for exa mple, a re intrinsic.
- Many are due to unc ontrollable factors that affect the measurement
- Many a re just due to funda mental sta tistic al a nd random fluctuation

The lack of sta tistic al fluctuation in a measurement is a BIG red flag on the data


Mendelian Paradox, a paradox that remains unsolved to this very day. Thus, on the one hand, Mendel's reported data are, statistically speaking, too good to be true; on the other, "everything we know about Mendel suggests that he was unlikely to engage in either deliberate fraud or in unconscious adjustment of his observations."[53] A number of writers have attempted to resolve this paradox.
One attempted explanation invokes confirmation bias.[54] Fisher accused Mendel's experiments as "biased strongly in the direction of agreement with expectation... to give the theory the benefit of doubt".[47]

In his 2004, J.W. Porteous concluded that Mendel's observations were indeed implausible.[55] However, reproduction of the experiments has demonstrated that there is no real bias towards Mendel's data.[56]

## Demo of electron Poisson statistic s a nd current shot noise



- Measurement "error" is NOTthe same as "wrong".
- Measurement error can be thought of as "deviation from expectation".
- Greatest scientific disc overies were often made when deviation is disc overed from the expectation of the prevalent theory (that's how a new theory is disc overed).

Remember this?

- Hence, nothing wrong with deviation as long as your method, techniques, instruments and execution are all correct.

just do it right. Let the chips fall where it may. The learning is greatest and most fun when you discover discrepancy and find out why!
You learn far more with Murphy law than when everything is smooth sailing


## A class-wide project to study statistic al deviation

- every one shall c hoose 10 resistors from your kit, all with the same errorband 5\% (gold band)
- for each resistor, measure the deviation:


Example, a nominal 100 Ohm resistor is measured to be 102.5 Ohm, the relative deviation is 0.025 or $2.5 \%$

- file a report
- with 31 students, we'll have 310 data points
- we will plot a histogram, find the mean, standard deviation, a nd determine what distribution best describes the statistic al devia tion


## have fun

## EC 2100



