Chapter 3 - Carriers in Semiconductor

ECE 4339
Han Q. Le (copyrighted) U. of Houston

Chapter 3 - Carriers in semiconductor -Part 3_1.gif

Part 3

0. Physical constants or frequently used formulas

8. App: Carrier concentration and distribution at thermal equilibrium

8.1 Calculations for some semiconductors

App Demo:  Carrier Concentration and Distribution at Thermal Equilibrium

8.2 Example 1: GaAs

Refer to this website (or you can find other similar websites) to look up for semiconductor properties:
http://www.ioffe.ru/SVA/NSM/Semicond/

Find the density of state Nc, Nv, and find the intrinsic carrier concentration Chapter 3 - Carriers in semiconductor -Part 3_3.gif for GaAs at 300 K. Plot Chapter 3 - Carriers in semiconductor -Part 3_4.gif from 100 K to 300 K. Plot and compare Chapter 3 - Carriers in semiconductor -Part 3_5.gif for GaAs with Si

8.1.1 Find Nc:

(Tutorial in Mathematica)

Chapter 3 - Carriers in semiconductor -Part 3_6.gif

Chapter 3 - Carriers in semiconductor -Part 3_7.gif

Chapter 3 - Carriers in semiconductor -Part 3_8.gif

Chapter 3 - Carriers in semiconductor -Part 3_9.gif

Chapter 3 - Carriers in semiconductor -Part 3_10.gif

Hence: Chapter 3 - Carriers in semiconductor -Part 3_11.gif

8.1.2 Find Nv (see exercise/HW)

Chapter 3 - Carriers in semiconductor -Part 3_12.gif

Chapter 3 - Carriers in semiconductor -Part 3_13.gif

Chapter 3 - Carriers in semiconductor -Part 3_14.gif

Chapter 3 - Carriers in semiconductor -Part 3_15.gif

8.1.3 Find ni (see exercise/HW)

8.1.4 Plot intrinsic carrier concentration (see exercise/HW)

Neglecting temperature dependence of the band gap (see app for T-dependence). Below is the answer.

Chapter 3 - Carriers in semiconductor -Part 3_16.gif

Chapter 3 - Carriers in semiconductor -Part 3_17.gif

Chapter 3 - Carriers in semiconductor -Part 3_18.gif

Chapter 3 - Carriers in semiconductor -Part 3_19.gif

Chapter 3 - Carriers in semiconductor -Part 3_20.gif

Chapter 3 - Carriers in semiconductor -Part 3_21.gif

Chapter 3 - Carriers in semiconductor -Part 3_22.gif

Chapter 3 - Carriers in semiconductor -Part 3_23.gif

8.3 Comparing intrinsic GaAs and Si

8.3.1 Calculation for silicon:

For Si, we can use the same formulas, but with a modification for the Si conduction band peculiarity:

Chapter 3 - Carriers in semiconductor -Part 3_24.gif

Chapter 3 - Carriers in semiconductor -Part 3_25.gif

From: http://www.mtmi.vu.lt/pfk/funkc_dariniai/quant_mech/bands.htm

It has 6 valleys: we call it 6-fold degeneracy. Also, the energy surface is not spherical: it has different effective mass in different direction. A good approximation of the spatially averaged mass is:  
Chapter 3 - Carriers in semiconductor -Part 3_26.gif

Chapter 3 - Carriers in semiconductor -Part 3_27.gif

Chapter 3 - Carriers in semiconductor -Part 3_28.gif

Chapter 3 - Carriers in semiconductor -Part 3_29.gif

Alternatively, we can define an DOS effective mass that takes into account anisotropy and degeneracy:

Chapter 3 - Carriers in semiconductor -Part 3_30.gif

Chapter 3 - Carriers in semiconductor -Part 3_31.gif

Chapter 3 - Carriers in semiconductor -Part 3_32.gif

Chapter 3 - Carriers in semiconductor -Part 3_33.gif

Chapter 3 - Carriers in semiconductor -Part 3_34.gif

Chapter 3 - Carriers in semiconductor -Part 3_35.gif

8.3.2 Comparison

Chapter 3 - Carriers in semiconductor -Part 3_36.gif

Chapter 3 - Carriers in semiconductor -Part 3_37.gif

Chapter 3 - Carriers in semiconductor -Part 3_38.gif

Chapter 3 - Carriers in semiconductor -Part 3_39.gif

8.4 Example 2: p-dope and n-dope

A piece of Si is doped with boron up to Chapter 3 - Carriers in semiconductor -Part 3_40.gif/ Chapter 3 - Carriers in semiconductor -Part 3_41.gif. Assume that all boron atoms are ionized at 300 K.

Is it p-type or n-type?

http://demonstrations.wolfram.com/DopedSiliconSemiconductors/
Contributed by: S. M. Blinder

What is the free electron concentration? (find Chapter 3 - Carriers in semiconductor -Part 3_43.gif for boron-doped Si )

Since Chapter 3 - Carriers in semiconductor -Part 3_44.gif >> Chapter 3 - Carriers in semiconductor -Part 3_45.gif,  approximate Chapter 3 - Carriers in semiconductor -Part 3_46.gif = Chapter 3 - Carriers in semiconductor -Part 3_47.gif

Chapter 3 - Carriers in semiconductor -Part 3_48.gif

Chapter 3 - Carriers in semiconductor -Part 3_49.gif

Chapter 3 - Carriers in semiconductor -Part 3_50.gif = 10^16 ;

Chapter 3 - Carriers in semiconductor -Part 3_51.gif

Chapter 3 - Carriers in semiconductor -Part 3_52.gif

Alternative answer: by looking up, the value of Chapter 3 - Carriers in semiconductor -Part 3_53.gif for Si at 300 K is Chapter 3 - Carriers in semiconductor -Part 3_54.gif

Chapter 3 - Carriers in semiconductor -Part 3_55.gif

Chapter 3 - Carriers in semiconductor -Part 3_56.gif

8.5 Example 3: Find po for Sb-doped Ge (see exercise/HW)

8.5.1 Solving for carrier concentrations

A piece of Ge is doped with Sb at Chapter 3 - Carriers in semiconductor -Part 3_57.gif. Is it n-type or p-type?
Assume that acceptor doping is insignificant, what is the electron concentration?

Since  Chapter 3 - Carriers in semiconductor -Part 3_58.gif is unspecified, it is negligible: 0
Condition of charge neutrality:
Chapter 3 - Carriers in semiconductor -Part 3_59.gif
Equilibrium:
Chapter 3 - Carriers in semiconductor -Part 3_60.gif
How many Eqs. do we have? How many unknown?

8.5.2 Plot electron concentration as a function of doping (see exercise/HW)

Plot the electron concentration calculated above as a function of doping from 10^12 to 5*10^14 at 300 K

9. Fermi level across different materials

9.1 Overview of concept

Chapter 3 - Carriers in semiconductor -Part 3_61.gif   

Chapter 3 - Carriers in semiconductor -Part 3_62.gifChapter 3 - Carriers in semiconductor -Part 3_63.gif

Chapter 3 - Carriers in semiconductor -Part 3_64.gif   

9.2 Example (see exercise/HW)

A Te-doped GaAs with Chapter 3 - Carriers in semiconductor -Part 3_65.gif density layer is epitaxially grown on a Mg-doped GaAs substrate with Chapter 3 - Carriers in semiconductor -Part 3_66.gif concentration. Calculate and draw the relative band diagram of the 2 layers.

Spikey Created with Wolfram Mathematica 9.0