Notes 21
Quadrature Coupler and Rat-Race Coupler
A quadrature coupler is one in which the input is split into two signals (usually with a goal of equal magnitudes) that are 90 degrees apart in phase. Types of quadrature couplers include branchline couplers (also known as quadrature hybrid* couplers), Lange couplers and overlay couplers.

Taken from “Microwaves 101”
http://www.microwaves101.com/encyclopedia/Quadrature_couplers.cfm

This coupler is very useful for obtaining circular polarization:
There is a 90° phase difference between ports 2 and 3.

Note:
The term “hybrid” denotes the fact that there is an equal (3 dB) power split to the output ports.
The quadrature hybrid is a lossless 4-port (the S matrix is unitary).

All four ports are matched.

The device is reciprocal (the S matrix is symmetric.)

Port 4 is isolated from port 1, and ports 2 and 3 are isolated from each other.
The quadrature coupler is usually used as a splitter:

- The signal from port 1 splits evenly between ports 2 and 3, with a 90° phase difference.

 \[S_{21} = jS_{31} \]
 Can be used to produce right-handed circular polarization.

- The signal from port 4 splits evenly between ports 2 and 3, with a -90° phase difference.

 \[S_{24} = -jS_{34} \]
 Can be used to produce left-handed circular polarization.

Note: A matched load is usually placed on port 4.
A microstrip realization of a quadrature hybrid (branch-line coupler) is shown here.

Notes:
- We only need to study what happens when we excite port 1, since the structure is physically symmetric.
- We use even/odd mode analysis (exciting ports 1 and 4) to figure out what happens when we excite port 1.

An analysis of the branch-line coupler is given in the Appendix.
Quadrature Coupler (cont.)

Summary

The input power to port 1 divides evenly between ports 2 and 3, with ports 2 and 3 being 90° out of phase.

Note: A matched load is usually placed on port 4.
A **coupled-line** coupler is one that uses coupled lines (microstrip, stripline) with no direct connection between all of the ports.

Please see the Pozar book for more details.

This coupler has a 90° phase difference between the output ports (ports 2 and 3), and can be used to obtain an equal (-3 dB) power split or another split ratio.
Circularly-polarized microstrip antennas can be fed with a 90° coupler.

One feed port produces RHCP, the other feed port produced LHCP.

Note: This is a better way (higher bandwidth) to get CP than with a simple 90° delay line.
Rat-Race Ring Coupler (180° Coupler)

“Applications of rat-race couplers are numerous, and include mixers and phase shifters. The rat-race gets its name from its circular shape, shown below.”

Taken from “Microwaves 101”

http://www.microwaves101.com/encyclopedia/ratrace_couplers.cfm

Photograph of a microstrip ring coupler

Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory
The rat race is a lossless 4-port (the S matrix is unitary).

- All four ports are matched.
- The device is reciprocal (the S matrix is symmetric).
- Port 4 is isolated from port 1, and ports 2 and 3 are isolated from each other.
Rat-Race Coupler (cont.)

The rat race can be used as a splitter:

1. The signal from the “sum port” Σ (port 1) splits evenly between ports 2 and 3, in phase. This could be used as a power splitter (alternative to Wilkinson).
 \[S_{21} = S_{31} \]

2. The signal from the “difference port” Δ (port 4) splits evenly between ports 1 and 2, 180° out of phase. This could be used as a balun.
 \[S_{24} = -S_{34} \]

Note: A matched load is usually placed on port 4.
The rat race can be used as a combiner:

- The signal from the sum port Σ (port 1) is the sum of the input signals 1 and 2.
 \[S_{12} = S_{13} \]

- The signal from the difference port Δ (port 4) is the difference of the input signals 1 and 2.
 \[S_{42} = -S_{43} \]
A microstrip realization is shown here.

\[
[S] = \frac{-j}{\sqrt{2}} \begin{bmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & -1 \\
1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0
\end{bmatrix}
\]

An analysis of the rat-race coupler is given in the Appendix.
A waveguide realization of a 180° coupler is shown here, called a “Magic T.”

Note: Irises are usually used to obtain matching at the ports.

\[
[S] = \frac{-j}{\sqrt{2}} \begin{bmatrix}
 0 & 1 & 1 & 0 \\
 1 & 0 & 0 & -1 \\
 1 & 0 & 0 & 1 \\
 0 & -1 & 1 & 0
\end{bmatrix}
\]
Monopulse Radar

Rat-Race couplers are often used in monopulse radar.

\[
\Sigma = A + B + C + D
\]

\[
\Delta_{AZ} = (B + C) - (A + D)
\]

\[
\Delta_{EL} = (C + D) - (B + A)
\]

The difference signals are used to determine the azimuth and elevation of the target.

\[
\Delta \phi = k_0 D \sin \theta
\]

\[
A - B = 1 - e^{-j \Delta \phi} = e^{-j \Delta \phi/2} \left(e^{+j \Delta \phi/2} - e^{-j \Delta \phi/2} \right) = e^{-j \Delta \phi/2} \left(2j \sin \left(\Delta \phi / 2 \right) \right)
\]

The difference between the two antenna signals maps into the phase difference \(\Delta \phi \), which maps into the angle \(\theta \).
Here we analyze the quadrature coupler.

Port 1 Excitation
“even” analysis

Input admittance of open-circuited stub:

\[Y_s = jY_0 \tan \left(\beta_s l_s \right) = jY_0 \tan \left(\pi / 4 \right) = jY_0 \]
Appendix A (cont.)

Port 1 Excitation
“odd” problem

\[V_{1}^{\circ} = -V_{2}^{\circ} \]
\[V_{4}^{\circ} = -V_{1}^{\circ} \]

Input admittance of short-circuited stub:
\[Y_{s} = -jY_{0} \cot \left(\beta_{s} l_{s} \right) \]
\[= -jY_{0} \cot \left(\pi / 4 \right) \]
\[= -jY_{0} \]
Consider the general case:

\[Y_s = \pm jY_0 \quad (+ \text{ for even}) \quad (- \text{ for odd}) \]

\[
[ABCD]_Y = \begin{bmatrix} 1 & 0 \\ Y & 1 \end{bmatrix} \\
[ABCD]_{\lambda/4} = \begin{bmatrix} 0 & \frac{jZ_0}{\sqrt{2}} \\ \frac{j\sqrt{2}}{Z_0} & 0 \end{bmatrix} \\
[ABCD_{\text{line}}] = \begin{bmatrix} \cos(\beta \ell) & jZ_0^{\text{line}} \sin(\beta \ell) \\ (j/Z_0^{\text{line}}) \sin(\beta \ell) & D = \cos(\beta \ell) \end{bmatrix}
\]

Shunt load on line
Quarter-wave line

In general:

[ABCD] = [ABCD]_Y [ABCD]_{\lambda/4} [ABCD]_Y

Here:
\[Z_0^{\text{line}} = \frac{Z_0}{\sqrt{2}} \]
\[\beta \ell = \pi / 2 \]
Hence we have:

\[
[ABCD] = \begin{bmatrix} 1 & 0 \\ Y & 1 \end{bmatrix} \begin{bmatrix} 0 & jZ_0 \\ \frac{j\sqrt{2}}{Z_0} & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ Y & 1 \end{bmatrix}
\]

\[
= \begin{bmatrix} 1 & 0 \\ Y & 1 \end{bmatrix} \begin{bmatrix} jZ_0Y \sqrt{2} & jZ_0 \sqrt{2} \\ j\sqrt{2}Z_0 & j\sqrt{2} \end{bmatrix}
\]

\[
= \begin{bmatrix} jZ_0Y \sqrt{2} + j\sqrt{2}Z_0 & jZ_0Y \sqrt{2} \sqrt{2} \\ jZ_0Y \sqrt{2} + j\sqrt{2}Z_0 & jZ_0Y \sqrt{2} \end{bmatrix}
\]

\[
Y = \pm jY_0 = \pm \frac{j}{Z_0} \quad \text{(+ for even)} \quad \text{(- for odd)}
\]
Continuing with the algebra, we have:

\[
[ABCD] = \frac{1}{\sqrt{2}} \begin{bmatrix}
 jZ_0 \left(\pm \frac{j}{Z_0} \right) & jZ_0 \\
 jZ_0 \left(\pm \frac{j}{Z_0} \right)^2 + j2 & jZ_0 \left(\pm \frac{j}{Z_0} \right)
\end{bmatrix}
\]

\[
= \frac{1}{\sqrt{2}} \begin{bmatrix}
 j(\pm j) & jZ_0 \\
 -j \left(\frac{1}{Z_0} \right) + j2 & j(\pm j)
\end{bmatrix}
\]

\[
= \frac{1}{\sqrt{2}} \begin{bmatrix}
 \mp 1 & jZ_0 \\
 j \left(\frac{1}{Z_0} \right) & \mp 1
\end{bmatrix}
\]
Hence we have:

\[
[ABCD]_0 = \frac{1}{\sqrt{2}} \begin{bmatrix}
\mp 1 & jZ_0 \\
-j \left(\frac{1}{Z_0} \right) & \mp 1
\end{bmatrix}
\]

Convert this to S parameters (use Table 4.2 in Pozar):

\[
[S]_0 = \begin{bmatrix}
0 & \mp 1 - j \\
\mp 1 - j & 0
\end{bmatrix}
\]

Note:
We are describing a two-port device here, in the even and odd mode cases.

This is a 2×2 matrix, not a 4×4 matrix.
Adding even and odd mode cases together:

\[V_1^+ = V^+ + V^+ \]

\[S_{11} = \frac{V^-}{V^+} \]

Hence \(S_{11} = 0 \) By symmetry: \(S_{11} = S_{22} = S_{33} = S_{44} = 0 \)
\[V_1^+ = V^+ + V^+ \]

By symmetry and reciprocity:

\[S_{21} = S_{12} = S_{43} = S_{34} = \frac{-j}{\sqrt{2}} \]
$V_1^+ = V^+ + V^+$

By symmetry and reciprocity:

$$S_{31} = S_{13} = S_{24} = S_{42} = \frac{-1}{\sqrt{2}}$$
By symmetry and reciprocity: \[S_{41} = S_{14} = S_{23} = S_{32} = 0 \]
Appendix B

Here we analyze the Rat-Race Ring coupler.
Port 1 Excitation
“even” problem

\[Y_0 = 1 / Z_0 \]
\[Y_{0s} = Y_0 / \sqrt{2} \]

\[Y_{s1} = jY_{0s1} \tan(\beta_s l_{s1}) \]
\[= j\left(Y_0 / \sqrt{2}\right) \tan(\pi / 4) \]
\[= jY_0 / \sqrt{2} \]

\[Y_{s2} = jY_{0s2} \tan(\beta_s l_{s2}) \]
\[= j\left(Y_0 / \sqrt{2}\right) \tan(3\pi / 4) \]
\[= -jY_0 / \sqrt{2} \]
Appendix B (cont.)

Port 1 Excitation
“odd” problem

$Y_0 = 1 / Z_0$

$Y_{0s} = Y_0 / \sqrt{2}$

$Y_{s1} = -jY_{0s1} \cot (\beta_s l_s)$

$= -j\left(\frac{Y_0}{\sqrt{2}}\right) \cot \left(\frac{\pi}{4}\right)$

$= -jY_0 / \sqrt{2}$

$Y_{s1} = -jY_{0s2} \cot (\beta_s l_s)$

$= -j\left(\frac{Y_0}{\sqrt{2}}\right) \cot \left(\frac{3\pi}{4}\right)$

$= jY_0 / \sqrt{2}$
Proceeding as for the 90° coupler, we have:

\[
[ABCD]_0 = \begin{bmatrix}
1 & 0 \\
\pm jY_0 / \sqrt{2} & 1
\end{bmatrix}
\begin{bmatrix}
0 & j\sqrt{2}Z_0 \\
j/\sqrt{2}Z_0 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
\mp jY_0 / \sqrt{2} & 1
\end{bmatrix}
\]

\[
= \begin{bmatrix}
1 & 0 \\
\pm jY_0 / \sqrt{2} & 1
\end{bmatrix}
\begin{bmatrix}
\pm 1 & j\sqrt{2}Z_0 \\
j/\sqrt{2}Z_0 & 0
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\pm 1 & j\sqrt{2}Z_0 \\
j\sqrt{2} \div Z_0 & \mp 1
\end{bmatrix}
\]
Converting from the \(ABCD \) matrix to the \(S \) matrix, we have:

\[
[ABCD]_e = \begin{bmatrix}
\pm 1 & j\sqrt{2}Z_0 \\
j\frac{\sqrt{2}}{Z_0} & \mp 1
\end{bmatrix}
\]

\[
[S]_e = \frac{-j}{\sqrt{2}} \begin{bmatrix}
\pm 1 & 1 \\
1 & \mp 1
\end{bmatrix}
\]

Note:
We are describing a two-port device here, in the even and odd mode cases.
This is a 2\(\times \)2 matrix, not a 4\(\times \)4 matrix.

Use Table 4.2 in Pozar
For the S parameters coming from port 1 excitation, we then have:

\[S_{11} = \frac{V_1^-}{V_1^+} \bigg|_{a_2=a_3=a_4=0} \]

\[S_{11} = S_{33} = 0 \]
(symmetry)

\[S_{21} = \frac{V_2^-}{V_1^+} \bigg|_{a_2=a_3=a_4=0} \]

\[S_{21} = S_{12} = S_{34} = S_{43} = \frac{-j}{\sqrt{2}} \]
(symmetry and reciprocity)

\[S_{11} = \frac{V_1^- + V_1^-}{2V^+} = \frac{1}{2} (S_{11}^e + S_{11}^o) \]

\[= \frac{1}{2} \left(\frac{-j}{\sqrt{2}} + \frac{j}{\sqrt{2}} \right) \]

\[= 0 \]

\[S_{21} = \frac{V_2^- + V_2^-}{2V^+} = \frac{1}{2} (S_{21}^e + S_{21}^o) \]

\[= \frac{1}{2} \left(\frac{-j}{\sqrt{2}} + \frac{-j}{\sqrt{2}} \right) \]

\[= \frac{-j}{\sqrt{2}} \]
Similarly, exciting port 2, and using symmetry and reciprocity, we have the following results (derivation omitted):

\[
S_{22} = S_{44} = 0
\]

\[
S_{23} = S_{32} = S_{14} = S_{41} = 0
\]

\[
S_{24} = S_{42} = \frac{j}{\sqrt{2}}
\]