Optical Fiber Intro - Part 1

Waveguide concepts

Copy Right HQL
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I 1. Introduction waveguide concept

1.1 Discussion

If we let a light beam freely propagates in freacg what happens to the beam?

‘ Plot[{—\/1+ Z, \/1+ Z } {z, 0, 3}, AspectRatio— 0.05, Filling » {1 - {{2}, {Green}}}]

3
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The beam grows big. It can grow small like whenfeeus, but becomes big again after the minimum.spot

This is known asliffraction.
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Plot[{—\/ 142 Y147 } {z. -2, 4, AspectRatio— 0.05, Filling - {1 - {{2}, {Green}}}]

ParametricPlot:sD[{\/ 140.17 Cosigl, Y 1+0.17 Sinigl, z}, {z, -3, 8, {¢, —Pi, Pi}]

If we like to propagate a beam while keeping itshene shape (cross section) everywhere, how dowe &xample:

/ \ -
A pair of parallel planar mirrors!

But we don't have to use mirrors, there are ott@rswthe main concept is that we can engineer dgumeid such a way
that we can use to "guide" the beam along the elslirection of propagation, this is the conceptafeguide. Optical
waveguide is simply a waveguide for light. Thisagdistinguish it from waveguides for other EM wawich as
microwave, RF...

1.2 Intro to optical waveguides

There are several ways to achieve optical waveglliderelevant, from the practical point of vietw,be aware of
technologies that are well established in applicetivs. those that are theoretically feasible hghtmot be practical.
Mirror or reflecting-wall optical waveguide, for @amnple can be achieved, but are not as practiadibéectric waveguides.
Holey fibers or photonic bandgap (PBG) waveguidediewise promising for special cases but havebeen as
widespread as dielectric waveguides.

Here we'll concentrate on dielectric waveguidesahee this is still the principal technology in filmptic communications.
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m 1.2.1 Concept of total internal reflection
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Snell's lawn; Sin[61] = n, SiN[65]

or: Siif,] = :—; Sin6;]

If ny >ny, there will be values df; such that Siff,] > 1. Whent this happens, total internal reflectioouws, and the

critical angle i) = ArcSin[n—2] .
n

m 1.2.2 Waveguiding effect from total internal refletion
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Summary:

1- Waveguides are structures that can "conduct" light, having certain spatial profile of the
optical dielectric constant

2- Because the optical dielectric constant is not spatially uniform, waveguides allow only
certain optical solutions (called optical modes) that:

- can be finite in space: confined or bounded modes

- can extend to infinity, but only with certain relationship of the fields over the
inhomogenous dielectric region
3- At the boundary between two regions of different ¢, the boundary condition of the EM
field critically determines the optical modes.
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m 1.2.3 Ray optics concept

In ray optics, the behavior light is modeled wittaght lines of rays, which can be used to expleaneguide to a certain

extent. However, only wave optics treatment isetmigjorous. Ray optics does offer a the intuitivetgful concepts of
acceptance angle and numerical aperture.

As illustrated in the left figure, a ray entersoihe perpendicular facet of a planar waveguidier can be trapped (or
guided) or escape into the cladding depending erntident angle. If the incident angle is lardert certain valué,, the

ray will escape into the core because the condftiototal internal reflection is not met. This dads called the
acceptance angle.
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This angle can be calculated as follow. &gebe the waveguide internal total reflection angle:

6. = ArcSin[:—i]

Then, the refracted angle at the facet is:

6, =5—9(;=——ArcS|n[n ]
1

The acceptance angle is give by Snell's law:

We can approximate:

Ng Sin[03] = Ny SiN[6; ]
ng Sin[65] = n; Cog6,]

Sinceng of air is ~ 1, we can also write: §igl= Ve — €

What if V € — € >17?

Ng Sin[@,] =Ny 1—— \/ ~Ve—€

In[3]:=

e2=13;
el-—e2 Vel-e2
Manipulate[PIot[{O.S— — X, -05+ —
V1i+e2-€l Vi+e2-€l

{x, -3, 0}, Filing - {1 {(2}, (Hue[0.6, 0.4, 1}}}
, PlotRange~> {{-3, 0}, {~3, 3}

,{el, 1.4, 2.5, AnimationRunning - False]

),
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el
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164 =D [+][Rl¥][=]

Out[4]=

-3.0 -25 -20 -15 -10 -05

The quantityng Sin[6,] is a measure of low large the the angular opeoirige waveguide to accept (or to radiate) the
beam. Thus, a concept is used to describe theitjuantmerical aperture or NA.

The light

Skew rays propagate without passing through theecemis of the fiber.
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The acceptance angle for skew rays is larger thaad¢ceptance angle of meridional rays. This cmmdéxplains why
skew rays outnumber meridional rays. Skew rayo#em used in the calculation of light acceptamcan optical fiber.
The addition of skew rays increases the amourigbf tapacity of a fiber. In large NA fibers, theiease may be
significant.

The addition of skew rays also increases the ammfuoss in a fiber. Skew rays tend to propagate tige edge of the
fiber core. A large portion of the number of skewys that are trapped in the fiber core are consiter be leaky rays.
Leaky rays are predicted to be totally reflectethatcore-cladding boundary. However, these raggartially refracted
because of the curved nature of the fiber bounddoge theory is also used to describe this typeaify ray loss.
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Cladding

M,

Core

The main result of skew ray is that because ittmamce around with a larger angle (glancing blavith the skew angle
v, it has a larger acceptance angle:

2
Mo Sinffag = —— [1- 2 = 1 _\/n;2—ny?

Cody] ny Cody]

In other words, it increases by the terr—.
Cody]
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I 2. Planar dielectric waveguide or slab waveguide

2.1 General concept of planar dielectric waveguide

A stack of layers of dielectric materials (arbiyraumber of layers) can form a waveguide as lonitj lz@s EM solutions
that propagate in the plane of the layers.

Ny

How do we know it functions as a waveguide? we ragbte the wave equation (from the Maxwell's equret) and see if
a propagating mode exists.

The general wave equation is:

W2

V2E + c—ze(x, Y, 2E =0 (2.1a)
W2

V2H + c_ZE(X’ y,2H =0 (2.1b)

In a waveguide, the dielectric is a constant alomg dimension, say z. If the waveguide solutiostsxithen the electric
field can be written:



Optical fiber intro-part 1.nb

13

E(x, y) €' #2-@Y wherep, called the propagation constant is unknowrw is the frequency of light, which is given.

The wave equation becomes:

2E  9%E

e 9y

(ﬁ2 - ‘;’—22 e(x, y)) E=0 2.2)

1- If a solution of Eg. (2.2) exists, it is calladnode of the structure

2- Eqg. (2.2) may have many solutions or none

3- A solution may have a unique valugBpbr a continuous range of valuef

3- The mode is called a propagating wave ifdRep

Ex. 2.1 What does the wavei#Z-«b |gok like for:

1.6=1
2.5=1+i0.05
2.8=1i0.05
In[5]:= B=1l, w =2n;
Animate[Plot| Re[e’ #2~“" ], {z 0, 50, ImageSize- {600, 100,
PlotRange—- {{0, 50}, {—1, 3}, Frame » True, AspectRatio—» 0.1, Filling —» Axis]
, {t, 0, I}, AnimationRunning - False
]
t {J D l[al¥][=]
1.0
0.5 |
out[6]= 0.0F
-0.5}
-1.0t
0




14 Optical fiber intro-part 1.nb
inf7l:= | B=1+1i0.05 w =27 ;
Animate[Plot| Re[e’ #*“"] /. {8 > 1+ i0.05,w - 2x} ,{z 0, 50, ImageSize~ {600, 100,
PlotRange—- {{0, 50}, {—1, 3}, Frame » True, AspectRatio—» 0.1, Filling —» Axis]
, {t, 0, I}, AnimationRunning - False
t {J D [al¥][=]
1.0

out[g]= 0.0f

0.5
~1.0¢
0

B=1i0.05 w =27 ;
Animate[Plot| Re[e’ #*~“V ], {z, 0, 50, ImageSize— {600, 100,
PlotRange— {{0, 50, {—1, 1}}, Frame —» True, AspectRatio— 0.1, Filling —» Axis]
, {t, 0, I}, AnimationRunning - False

]

t i DA ¥][=]

UL

VDY
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Ex. 2.2 Plot 3D the wave /" giBz-b for:
B=1 and w=2.

B=1l; w =2n; w=2.;

Animate[Plot3D[ e /%" Re[ef #2=V ], {x, =5, 5), {z, 0, 50,
(* ImageSize» {400,400, x)Mesh » False, PlotRange- {{-5, 5}, {0, 54, {—1, 1}}
, PlotPoints » {20, 153, BoxRatios— {1, 5, 1}, ViewPoint » {5, 8, 4}],

{t, 0, 3 , AnimationRunning - False]

: 3 MERE]
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Ex. 2.3 What is the wavae—""/"" ¢=iBz+ b realtive to that of e/ £iB2=®Y 2 |n other words, what
does the sign of signify?

In[9]:= B=1l, 0w =2n; w=2.;

Animate[Plot3D[ /%" Re[e™ B2+ @V 4 ¢iF2=0V] (x, -5, 5§, {z, 0, 50,
(* ImageSize» {400,400, x)Mesh » False, PlotRange- {{-5, 5}, {0, 54, {-2, 2}}
, PlotPoints » {20, 153, BoxRatios— {1, 5, 1}, ViewPoint » {5, 8, 4}],

{t, 0, 3 , AnimationRunning - Fals%

t {J D2 1¥]=]

out[10]=

2.2 An example: 3-layer symmetric slab waveguide

In practice, for complex design, Eg. (2.2) abowve loa solved by numerical method. Analytical apphoaauseful to
illustrate the qualitative aspect of the dielecwaveguide behavior. Here, we will look at the diesp3-layer symmetric
slab waveguide
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Consider the trivial case of symmetric 3 layerdwiiidicese; (cladding) and; (core).

m 2.2.1 Solutions in each layer

Equations (2.2) becomes

2 2
& —(/5’2— “’?e(x))E:O 2.3)

which has two cases:

1- If x is in the core:

92E w?

- (/32 - Ez) E=0 (2.4.3)
2- If x is in the cladding:

92E w?

a (52 - el) E=0 (2.4.b)

| DSolve dy « Ef[x] + ko® Ef[x] == 0, Ef[x], x |
| {{Ef(X) > ¢4 sin(ky X) + ¢ cogks X)}}

| TrigToEXp [{{Ef (x) = c; sin(k, X) + ¢, cogks X)}}]
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DSolve dy « Ef[x] + ki® Ef[x] == 0, Ef[x], x |

| {{Ef(X) > ¢4 sin(ky X) + ¢ cogky X)}}
| DSolvedxx Ef[x] — ki® Ef[x] = 0, Ef[x], x|

| {{Ef(0) > ¢ 179 + ¢ 17})

The solutions are:

YoorenlX] = €725, YicoreplX] = €72%  (2.5)
in the core, where ko = /€2 ko? — B2 (2.5a)
and

YoadalX] = €% YoaaplX] =X (2.6)
for radiating wave in the claddindg = +/ 1 ko? — 2 (2.6a)
OR

YoiadAlX = €*1%; Yl Xl =€~ 1% (2.7)
for evanescent wave (bounded) in the cladding

K1 = ,82 — €1 k02 . (273)

For waveguide mode (bounded), we expect only smstEq. (2.7)
The E or H field (TE or TM):

(EorH)=F[x] e fZzeVy, (2.8a)

where:
FIX] = cayalXl + cg ¥alX] (2.8b)
or: FIX = (el veix). () @80)

Remember that we don't have to keep the €AY because it is the same everywhere.

m 2.2.2 Boundary condition

We have the solutions®*2* and ande**¥1* or e**1* , does this mean that the problem is solved? Qisiaot, because
we still don't have specific solutions. These aragal solutions in EACH region. They must stilltaleeach other at the

boundary.
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For dielectric media, surface charge and surfaceeotiare zero. The boundary conditions are:

v.D=0;V.B=0; .9)

For normal component of E field; E; = ex Ey; (D=¢E)
paH = poHz B=pH)

and H field:

For most nonmagnetic medjas1, so rarely do we have discontinuity of H acrassnterface.

For tangential E field, the component is continuous

(2

(2.10)
(2.11)

Ei=E (2.12)
and for zero surface current, so is the H field:
Hy = H, (2.13)
T X "
as = Ei -
ir =
- N, 7
“"\h‘ = J‘
\‘_ 'I
4 1
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Any polarization can be split into 2 component€: Transverse electric or TM: transverse magnetic
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2.3 Boundary conditions for different polarizations

m 2.3.1 TE mode
m 2.3.2 TM mode

m 2.3.3 Equations for solutions
The solution is obtained by satisfying all boundesyditions. Each boundary condition gives a setqpfation. Various

coefficients will be determined by the Egs.

Zero at infinity
Y
Cladding {';,_E! F
p— £ !.“ T f::—ﬂ@x \f_. ik . \_7(\_
Cladding g, ei‘:e"f

2.4 Bounded mode TE

m 2.4.1 Characteristic equation

The S matrix for the core:
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i Ko (X+L) —i ko (X+L) i Ko X —i ko X
L e'"2 et e et"2
FullSimplify [ : : . Inverse[ : . ]]
ikz e ko (x+L) ) k2 e-zkz (x+L) ikz ezkzx —i k2 e-zkzx

ko

[ cogL ko) sinlLlo) ]
—Sil"(L kz) k2 cogL kz)

Notice that the S matrix has translational symmetry.

This connect the left and the right of the coreaerg

cogL ky) sinlLlo)
ko

—sin(L k2) k2 cogL kz)

For TE mode, the interface M matrix is unity. Thge® equation is:
( wArightmosTxl] (pBrightmost[Xl] ] (CAn )

ax wArightmosTXﬂ ax wBrightmosTXﬂ Cgn

ST otal (

ax d/AIeftmost[Xl] ax l//BIEﬂmOSt[X]_] Ce1

WAIeft most[xl] wBIEﬁ most[xl] ] ( Ca1 )

Here is a way to choose neat solution:

d/Arighl mos [X] — 6ekl(x—L) : wBrighlmOS[X] — e—Kl(x—L)
l//AIEﬁmOS[X] = e*1X : l//BIEﬁmOS[X] = e 1%

M
(5 e e e (2 )

—sin(L kz) k2 cogL kz)

o Lk sin(L kp)
(Cr' ] == FullSimplify [Inverse[( 1l )][ el ko ( L )](C'Sﬂ)
ight =K CsinL k) ko cogLkp) ) V< TE

Cleft (COS(L ko) +

( 0 ) 2 k2 Kl
Cright o sinL ky) Cleft (k%ﬂ%)
2 k2 Kl

sin(L ko) (< -K3) ]

There are 2 equations. For the first one, the waly we have a non-trivial solution is:
sin(L kp) (k2-k3)

coqL ko) + =0.

ko k1

This is the characteristic equation: it says that w can't just choose arbitrary value off to satify the wave equation.
There is a unique propagation constant for each mas

What does the second equation give us?
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sin(Lkp) (k3+43)

Cri =
right Cleft 2Ky k1

a proportional relation betweergn: andcier: we can choose an arbitragy,, thenciign is fixed or vice versa. The wave
amplitude is fixed relatively between sectionsy¢his ONLY ONE arbitrary amplitude for the wholewea as it should be.

There are several way to express the same chassicteguation:

CodLky]  (k5—«i)
SIn[L k2] 2k2 K1

cot(L ky) ==

sin(L kz) (k% - K3)
coqL ko) + ==0/.L->2a
2|(2 K1

sinaky) (k2 — k)
cog2aky) + ==0
2 k2 K1

sin(2aky) (k2 —k3)
2 k2 K1 ]

sin(ak: cos(ak: sin(aks) ko cos(ak:
co2(aky) + ( 2)/|<(1 (akp) ~ (aky) ko cos(aky) _ sir(aky)
2 K1

Factor[%]

(cogaky) k1 — sin(aky) ky) (cogaky) ky + sin(aky) «1)

ko k1

‘ TrigExpand [cos(Z aky) +

| (cogaky) k1 — sin(aky) ky) (cogaks) ko + sin(aks) k1) == 0

We notice that this means this single characterésjuation gives us 2 separate characteristic guatens:
((Giﬂ(z) K1 — sin(a kz) k2 =0
AND cos kz) k2 + sin(a k2) k1 =0

What is the meaning of this? It means that thezeao classes of modes and solutions, one for eqaation. But why?
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because of symmetry: in any quantum problem, ihesee symmetry, we have a subset of eigensolutf@tdelong to an
eigenspace of that geometry. Similarly here, weshmsymmetric waveguide, which has the reflectionrsetry that have
even solution: F[x]=F[-x] or odd solution F[x]=-B: We can guess that each "sub-characteristicaggpu is for each
class of modes and solutions.

If fact, the even solutions are: Qksx] in the core. At the core boundary:

( Cogks a]

C
H P —Kkq(X-a) - i . _
_k, Sinfk, ) In the cladding, the solution Ge*1 : At the cladding boundar{._ck1 ) ChooseC = Cogks a],

. Cogkya] Cogks a]
the equation ig; ): ( )

—ko Sinfks a] —Cogks a] k1

Obviously, the charac. eq. ks Sinfk, a] = Cogdks a] k; or Cogk, a] k1 — ko Sink; a] = 0. We can similarly verify the
same for odd solutions.

In[17]:= ResolvTHnindex_List, a_,A , neff ] := Module[{el, €2, k1, k2, kO},
{€l, €2} = nindex"2; kO = 2xPi/A;
k1 = KO » Sgrt[Abs[neff*2 —€1]]; k2 = kO % Sqrt[Abs[e2 — neff*2]];
(coqak2) k1 — sin(ak?2) k2) (co9dak2) k2 + sin(ak?2) 1) 1;

indexprof = {3.4,3.5}; a=25;22=1.5;
Plot[ResolvTHindexprof, a, A, x], {x, 3.4, 3.3]

L L L L L L | L L L L n L
3.42 3.44 3146 3.48 3.50

o

The roots of the equation are where the function asses the horizontal axis, which is ==0These are discrete modes
of the waveguide.



24 Optical fiber intro-part 1.nb

| FindRoot[ResolvTH{3.4, 3.5}, 2.5, 1.5,n] == 0, {n, 3.42, 3.43]

| {n— 3.43683

1- This value n (example is 3.43683 above) is called the MODE EFFECTIVE INDEX.

=L

Neff = ko

In other words, the mode acts as if it sees this index value in the waveguide.
2- Each mode has its own index, different from each other

3- The speed of propagation is: v = — , hence different modes move at different speeds.
Neff

This causes INTERMODAL DISPERSION. If a light pulse is a linear combination of many
modes, each modal component will move at its own speed, and after awhile, be out of step
with others.

2.4.2 EM field

2.4.3 lllustration: what does the "profile" looks like
2.4.4 Traveling electric field

2.4.5 Vector graphics

2.4.6 Field lines

2.5 Bounded mode TM

I 3. Key concepts of waveguide

Although we study a particular waveguide geometmgve, the slab waveguide, several important coscanet applicable
to any waveguide, and can be illustrated with thb waveguide.

3.1 Intensity and energy flow

m 4.1.1 Energy flow: Poynting vector - TE mode
Intensity inside a waveguide is obtained by evahgathe Poynting vector. The time-averaged PoyniiEgtor is:

Sy= éRe[Exﬁ*] (3.1)
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Consider the example of slab waveguide.

For TE mode:
E=E[x 2§ et 3.2)
X ¥ z
H :—LVXE = 8x 8y 62 (33)
kKo
0 E, O
-0;Ey[X, Z]
- __t PRI 0 —iwt
o (X y 2) e
OxEy[X, 2]
(S)= = R E xH'| (3.4)
X % z
= = —Re| 0 E, 0
871 uky . .
-i0;Ey"[X, Z] 0 i0xEy'[X, Z]
X y Z
Def| 0 Efy[x, 2] 0 |

—-id,Ef*[x, Z] 0 i 0y Efy*[X, 2]
i ZEfy(x, 2) ((Efy)") P (x, 2) + i XEfy(x, 2) ((Ef,)" )7 (x, 2)

Sy=c/@8n) Re[Exﬁ*] (3.5)

= Re[x:z Ey(x, 2 ™ + Zi Ey(X, 2) az]

Is it possible for a net energy to flow along xedtion? Intuitively, no. The energy can bounce heud forth from within
the waveguide, but the net roundtrip (or the tepaice average) must be zero.

dEy* JEy*
If Ey(X, 2) is real, then so isal and R%f(:j Ey(x, 2 0—y] = 0: Obviously the intensity along x direction = QutBhe
X X
principle must be true much more generally, nofdist this case of TE mode and r&g(x, 2).
The intensity of the z-traveling component is givsn

’(5).2’ = |Rd ¢ Ey(x, 2 :E—Z]

(3.6)

and the power is given by:

d/x:sﬂzk0 f_";’Re[ziEy(x, 2) %”dx (3.7)

P=[* )2

For modem:
d Ey*

92 = _iﬁmeii'gszm*[X] (3.8)

The intensity is:
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(92 = -5 A (| EnlX D72 (3.9)
Cheff:m A
= .. (IEalXd P2
_ Cleffim g 2

P= ooy L% (| EmlX] P? d x (3.10)

These expressions are very similar to planewawd, tve difference being the effective index, whigimode-dependent.

This is the reason why normalization with respegidwer is slightly different from normalizationtivirespect to
wavefunction:

For just wavefunction: f_";( | Em[XI D2 = 1. (3.114a)
For power: Neit;m [ (| Em[X] PA2dx = 1 (3.11b)
(all other constants are dropped for convenient).

Either way is fine as long as one remembers whaséoin each calculation.

m 4.1.2 For TM mode

(S)= = L Re-ikH, HMO(x 2 —izH, HPP(x 2] (3.12)

81 eky

The intensity is given by:

sl _c LiHex Y
‘(S).z = ’Re[ i Hy'(x, 2 — ” (3.13)
Now we need to convert to Ex:
E, =— i d7Hy[x, Z] . (3.14)
For a given mode m;
Emx =— i i Bm HylX, Z] (3.15)
_ Bm _ Peff;m
= o Hy[x, Z] = - Hy[X, Z]
Thus: HylX, 21 = —— Emx. (3.16)
Neff;m
Then:
‘<§>2 = = — |R¢ Eny’ Emy (3.17)
. = Py et m m;X m;x .
c € 2
= & rorm UEml)

Indeed that the intensity for TM mode is proporébio the transverse component of the electrid fias expected.

The power of the mth mode is given by:

Pr=[% | Sm-2

dx = — [ elXI (| Emx|)?dx  (3.18)

T Neff;m
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Notice thatf_";e[x] (| Emx |)2 d x can be written as:
[ el] (| Enme |2 d % = fME& [ (| Emx|Pdx  (3.19)
= (o [7(|Emx|)?d

where (e) is the spatial average efThus:

Pm= — f°°(|me|) dx. (3.20)

8 neﬁ m

(&

Neff;m

Notice the suttle difference in the power expressionBfahd TM mode. The ratie——can be considered as a modal

average index.

m 4.1.3: In the lab: intensity plot

In the lab, if we look at a waveguide facet, whatve see? We see the intensity.

alldp = {};
For[i = 1,i < Length[neff] + 1, i ++,

DensityPlotfneff[[i]] * Abs[FieldTE[nindex, a, A, neff[[i]], x][[1]1]1"2, {y, 0, 20
X, -4, 4
, PlotPoints —> {2, 203, Mesh —> False
, ImageSize—> {700, 200]

Intensity plot

4 F

o
(2}

10
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We recall earlier that for some TM mode, if thegrdlifference is large, the E field leakage is a@jsite large. We can see
how it is in this example
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inf12:= | nindex={1,3.9; a=05;22=15;
Plot[ResolvTM[nindex, a, A, X], {X, nindex[[1]], nindex[[2]1}]

15000

10000

5000

Out[13]= T~

15 3 2.5

3.5

-5000

—-10000

segment2= {3.49, 3.4, 3, 2.5, 1.5, 1.0 neff = {};
For[i =1, i < Length[segment3, i++,
AppendTo[neff,
x /. FindRoot[ResolvTM[nindex, a, A, x] == 0, {X, segment2[i + 1]], segment2[i]]}]
11

| neff

| {3.42062, 3.1713, 2.70932, 1.91369, 1.02868

alldp = {};
Eps[x_] := If [Abs[x] <= a, nindeX[[2]]*2, nindex[[1]]"2];
For[i = 1,i < Length[neff] + 1, i ++,

DensityPloff (Eps[x] / neff[[i]]) * Abs[FieldTM [nindex, a, A, neff[[i]], xX][[3111"2, {y, 0, 20
,{x,—=1.5,1.3
, PlotPoints —> {2, 20, Mesh —> False
, ImageSize-> {700, 200]
1
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3.2 Confinement factor

An important concept (for all waveguide, not just: confinement factor: How much of the elecfiidd is really in the
core region? The fraction of the field in the c@realled the confinement factor. (in complex stuue, we need to define
what "core" region is the region of our interest)

R r[EIxyID? dxdy

3.21
RH(EIXYID? dxdy ( )
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3.3 Multi-mode propagation

m 3.3.1 Concept

If we launch an optical beam into a multimode waxdg, what do we get out at the other end? Agaimapy the
principle of linear superposition:

®[X] = ¥ am FmlX] . (3.22)

We can represent the input signal as a finite-reattor:

ai

a
= |2 |. The ful expression of the electric field is:

an

= N =4 i(Bmz-wt _ ,—iwt vN =t i Bmz
E Zm:lam Em[X] e*'Pm =e zm:lam Em[Xx] e #m (3-23)

We notice one very important feature: we cannoassp the x and z dependent component of themthianymore.

Thus:while the z-dependenindthe x--dependentomponentanbe separatedior everyeigenmodef the wavequidethey
cannotbesofor anyarbitrarywave.

The reason is modal dispersion as discussed abagh:mode has a different propagation congtant

What does this entail? Remember how when you adesvgether, not only amplitude but also phaserig important?
Let's consider the input signal at z=0:

TEz=0]=e et YN an EnlX]. (3.24)
At z=L, we have:
TEz=Ll=e SN janel ML Eplx]  (3.25)
= U SN o' EnlX
where am'=am e Pmt,
Thus, the profilejfx, z= L] can be very different from that at z=0.

This very important aspect is the foundation foveguide circuit: modulate and control of light péthough waveguide.

m 3.3.2 Example

Consider a slab waveguide with 2 modes:
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in[24]:= | nindex={1.4,19; a=125;2=15;
Plot[ResolvTHnindex, a, A, x], {X, nindex[[1]], nindeX[[2]1}]

out[25]=

1 1 1 1 1 1 1 | 1 1 1 1 1 1
1.42 1Md4 1.46 1.4 1.50

In[26]:= segment= {1.49, 1.46, 1.4Q neff = {};
For[i =1, i < Length[segmeni, i++,
AppendTo[neff,
x /. FindRoot[ResolvTHnindex, a, A, x] == 0, {X, segmenf[i + 1]], segmenf[i]l}]
11

In[28]:= | neff

out[28]= | {1.48382, 1.43829

Let's look at the waveguide mode
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Plot[{FieldTE[nindeX, a, A, neff[[1]], x][[1]]
, FieldTE[nindex, a, A, neff[[2]1, xI[[1]11}, {x, —6, 6}
, PlotRange—> {—1., 1}, PlotStyle —> {{Hue[0.2, 1, 0.8}, {Hue[0.8, 1, 0.8}}]

- Graphics

At z=0, let's have a wave that consists of half laalfl of the low mode and the high mode:
w=0.5;
Plot[{w = FieldTE[nindex, a, A, neff[[1]], X][[1]]

+ (1 —w) % FieldTE[nindex, a, A, neff[[2]], X][[1]11}, {X, —4, &
, PlotRange-> {-1., 1}, PlotStyle —> {{Hue[0.2, 1, 0.8}, {Hue[0.8, 1, 0.8}}]

0.75¢

o
N

0.25¢

-0.25¢
-0.5¢

-0.75¢

- Graphics
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What does this wave look like as it propagatesagtbe waveguide?

At z= 0:

= 1

E[x, z=0]= = e’“’t(El[X] + E2[X] )

N

Elx z=L]= eietfetbat Ealx] + e P2L Bylx] )

= letieteifi Eilx]+ el P2 P Eplx))
What happens at z=L wheflf2 A1)t = ¢i7 2
E[x z=L]= %w’wt MlL(El[x] - Ez[x])
Let's compare the field profile at z=0 and z=L,gpimg the oscilling terna=*«t ¢ A1 L :
w = 0.5;
Plot[{w x FieldTE[nindex, a, A, neff[[1]], x]1[[1]]

+ (1 - w) = FieldTE[nindex, a, A, neff[[2]], X][[1]]
, Wx FieldTE[nindex, a, A, neff[[1]], x][[1]]

— (1 -w) % FieldTE[nindex, a, A, neff[[2]], X][[1]1}, {X, —4, &}
, PlotRange-> {-1., 1}, PlotStyle —> {{Hue[0.2, 1, 0.8}, {Hue[0.8, 1, 0.8}}]

-0.25¢
-0.5¢

-0.75¢}

- Graphics

Remarkable: this tells us that the profile changgte a bit as the wave propagates: it is not adveagonstant profile wave
in a waveguide! What if it keeps on going?

E[x, z=2L] = % e iwtei2fy '-( El[x] +ei2(B2-B)L Ez[x] )
i(Bo-B)L _ in - B _ _ 1 ot i2p LB =4 . .
ande'\P27P1Ut = ' 1 E[X, z=2L] = 5 ¢ e'“P1 (E1[x] + E>[X] ) we are back to square one again.

We can see all this by looking at its intensityoriarthe above expression of the Poynting vector:
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*

| (S).z

- ﬁhe[wy(x, 2) HZ ]

Ey(X, 2 = WE1(X) €12 + (1 —w) Eyp(X) /P22
IEy*
0z

=—i B1WEy1(X) e P17 — i Bp(1-w) Ey.2(X) e P2z

0 Ey* . .
i Ey(X, 2) 8—1 = (WEy1(X) €17 + (1 —w) Eyp(x) €/ 27)

| W=.;

Expand|(WEfy1(0) €#12 + uEfy5(x) e #27)
('Bl WEfy:1(X) e Pz 4 Bou Efy.2(X) e PPz )]

(BiWEy100 €™ P17 + Bo(1—w) Eyp(x) P22

| W2 By Ef1(%)% + €' 2P2712B1 yw By Efo(X) Efy(X) + € 2P171282 uw B, Efp(X) Ef1(X) + U2 Bo Efa(X)?

i Ey(X, 2) % =W B1 Ef1(X)? + U2 By Efy(x)?
+He' P27 F1) By + e P27 F1) B,) uwEfy(x) Efy(X)

There is a real termw? 81 Efy(X)% + u? B, Ef2(x)? which is the individual sum of the intensity oteacomponent. But
more importantly, there is the interference term:

(¢ 4B2=B1) By + ¢ BaB1) B2) uw Efa(x) Efy(x).

What is the effect of this interference term? Lpkt it out:
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2r
Inf29]:= | w=0.5; B = T neff;

Plot3D[Re|(w = FieldTE[nindex, a, A, neff[[1]], x][[1]] &' /M1
+(1—w) % FieldTE[nindex, a, A, neff[[2]], x][[1]] &* A!211Z) «
(w BI[1]] * FieldTE [nindex, a, A, neff[[1]], x][[1]] e~* A1
+(1—w) % BI[2]] * FieldTE[nindex, a, A, neff[[2]], X][[1]] e~*All212)
,{z, 0, 3@, {Xx, —]2.5, 2.3, PlotPoints —> {120, 404
, PlotRange—> All, Mesh —> False, BoxRatios—> {30, 5, 3,
ViewPoint —> {0, 0, §]

out[30]=

Notice what happens: the wave seems to move from rigbtdd the waveguide to left and back to right agaid so on... :
this is the behavior of a ray that bounces backfartl between the two boundary surface. Wherbkasshift maximum?
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T

L =
Abs[(B[[2]] - BII1ID]

16.4728

What is aAB coupler? why is it calledAB?

We have a waveguide with this property: cladding idex= 1.4 ; thickness 2.5 um, the core index can be
tuned with an external electric field from 1.43 tol.5. A beam with 1.5 um wavelength is coupled to en
side of the waveguide (model + mode2), how does theéernal electric field can change its propagation
property?

nindex = {1.4, ncorgd; a=1.25; A =1.5; allp = {};
For[i=1,i <12, i++, {ncore= 1.45+ (i — 1) * (1.55—-1.45/10;
AppendTolallp,
Plot[ResolvTH{1.4, ncorg, a, A, X], {X, 1.4, ncorg, DisplayFunction —> Identity ]]
H
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| Showallp, DisplayFunction —> $DisplayFunction]

- Graphics
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nindex = {1.4, 1.45%; a=1.25;A=1.5;
Plot[ResolvTHnindex, a, A, x], {X, nindex[[1]], nindeX[[2]1}]

0.5

1.41 1.42 1.43 1.44

-0.5

- Graphics

segment= {1.44, 1.43, 1.40% neff = {};
For[i =1, i < Length[segmeni, i++,
AppendTo[neff,
x /. FindRoot[ResolvTHnindex, a, A, x] == 0, {x, segmenf[i + 1]], segmenf[i]l}]
11

| neff

| {1.43671, 1.40476
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2n
w=0.5; g= T neff;

plotl = Plot3D|Re[(w = FieldTE[nindex, a, A, neff[[1]], x][[1]] &’ #1112
+(1—w) % FieldTE[nindex, a, A, neff[[2]], x][[1]] &* A!211Z) «
(w BI[1]] * FieldTE [nindex, a, A, neff[[1]], x][[1]] e~* A1
+(1—w) % BI[2]] * FieldTE[nindex, a, A, neff[[2]], X][[1]] e~* #1212
,{z, 0, 3@, {Xx, —]2.5, 2.3, PlotPoints —> {120, 4Q
, PlotRange—> All, Mesh —> False, BoxRatios—> {30, 5, 3,
ViewPoint —> {0, 0, §]

- SurfaceGraphics

nindex = {1.4, 1.55%; a=1.25;A=1.5;
Plot[ResolvTHNindex, a, A, x], {X, nindex[[1]], nindex[[2]]}]

segment= {1.54, 1.5, 1.48 neff = {};
For[i =1, i < Length[segmeni, i++,
AppendTo[neff,
x /. FindRoot[ResolvTHnindex, a, A, x] == 0, {x, segmenf[i + 1]], segmenf[i]l}]
11

neff

{1.53254, 1.48146
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2n
w=0.5; g= T neff;

plot2 = Plot3D|Re[(w = FieldTE[nindex, a, A, neff[[1]], x][[1]] &* #1112
+(1—w) % FieldTE[nindex, a, A, neff[[2]], x][[1]] &’ A1211?) «
(w= BI[1]] = FieldTE[nindex, a, A, neff[[1]], x][[1]] ~* AI[112
+(1—w) % BI[2]] * FieldTE[nindex, a, A, neff[[2]], X][[1]] e~* #1212
,{z, 0, 3@, {Xx, —]2.5, 2.3, PlotPoints —> {120, 404
, PlotRange—> All, Mesh —> False, BoxRatios—> {30, 5, 3,
ViewPoint —> {0, 0, §]

0 10

| - SurfaceGraphics

3.4 Modal dispersion

How does thg8 depend om?

nindex = {1.4, 1.3; a=1.25;
Cc = 2.99792458 ;
plotl = Plot3D[ResolvTHnindex, a, ¢/ f, x],
{x, nindex[[2]] — 0.005, nindex[1]] + 0.003,
{f, 2, 4}, PlotPoints —> {70, 3@, DisplayFunction —> Identity];
plot2 = Plot3D[0,
{x, nindex[[2]] — 0.005, nindeX[1]] + 0.003,
{f, 2, 4}, PlotPoints —> 2, DisplayFunction —> Identity ] ;
Show{plotl, plot2, DisplayFunction —> $DisplayFunction,
ImageSize—> {500, 50Q, BoxRatios— {1, 1, 1}, ViewPoint —> {2, -5, 3}]
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2.0 2.5 3.0 35
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Linked to Fig. 4.4.1

| - Graphics3D

Plots of Blw] or neg[w] or B[f] or ne[f1 or B[A] or ne[A] are called dispersion curves.
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27 Nefflw] w Ngff[w] )

We would expect thag[w] = =

- © where(e) is some sort of averaged dielectric constant ®f th
Cc Cc

waveguide, becausgg[w] is approximately the modal average of the entieéedtric constant
profile:

120, elx] (EmlxID? dx

Neffmlw] =
eff,m[ ] ffgo (IEm[X]I)ZdX
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However, as the frequency change, the mode prdfédeges, and.¢[w] is not constant for each mode. Recalling what we
define as dispersion:

W Neft [W]
| nver seGvDt er m= 8, ——m88 — ;
c
: . W Nett [w]
di spersion =9, , —
c

2ng(w)  wngg(w)
+
C C

InverseGVDterm

Neff(w) W néﬁ (w)
+

C C

I : . . 2mg(w)  onggw)
We see that the FIRST order derivativengf[w] already contributes to the dispersion term. Téigtt——— + ———— is
C Cc

called modal dispersion, if we exclude the contitruof material dispersion fromg (w) andnZx(w). Thus, by virtue of

the changeof the mode profile vs.w, we havea changeof ne[w]_that givesmodal dispersion.




