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1. Introduction waveguide concept

1.1 Discussion

If we let a light beam freely propagates in free space, what happens to the beam?
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The beam grows big. It can grow small like when we focus, but becomes big again after the minimum spot.

This is known as diffraction.
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ParametricPlot3DB: 1+ 0.1z2 Cos@fD, 1+ 0.1z2 Sin@fD, z>, 8z, -3, 8<, 8f, -Pi, Pi<F

If we like to propagate a beam while keeping it the same shape (cross section) everywhere, how do we do it? Example:

A pair of parallel planar mirrors!

But we don't have to use mirrors, there are other ways, the main concept is that we can engineer a medium in such a way 

that we can use to "guide" the beam along the desired direction of propagation, this is the concept of waveguide. Optical 

waveguide is simply a waveguide for light. This is to distinguish it from waveguides for other EM waves such as 

microwave, RF... 

1.2 Intro to optical waveguides

There are several ways to achieve optical waveguide. It is relevant, from the practical point of view, to be aware of 

technologies that are well established in applications vs. those that are theoretically feasible but might not be practical. 

Mirror or reflecting-wall optical waveguide, for example can be achieved, but are not as practical as dielectric waveguides. 

Holey fibers or photonic bandgap (PBG) waveguides are likewise promising for special cases but have not been as 

widespread as dielectric waveguides.

Here we'll concentrate on dielectric waveguides because this is still the principal technology in fiber optic communications.
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à 1.2.1 Concept of total internal reflection
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Snell's law n1 Sin@q1D = n2 Sin@q2D
or:                     Sin@q2D = n1

n2
Sin@q1D 

If  n1 > n2 , there will be values of q1 such that Sin@q2D > 1. Whent this happens, total internal reflection occurs, and the 

critical angle is qc = ArcSinB n2

n1
F .

à 1.2.2 Waveguiding effect from total internal reflection
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Summary:
1- Waveguides are structures that can "conduct" light, having certain spatial profile of the 
optical dielectric constant
2- Because the optical dielectric constant is not spatially uniform, waveguides allow only 
certain optical solutions (called optical modes) that: 

- can be finite in space: confined or bounded modes
- can extend to infinity, but only with certain relationship of the fields over the 

inhomogenous dielectric region
3- At the boundary between two regions of different e, the boundary condition of the EM 
field critically determines the optical modes.
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à 1.2.3 Ray optics concept

In ray optics, the behavior light is modeled with straight lines of rays, which can be used to explain waveguide to a certain 

extent. However, only wave optics treatment is trule rigorous. Ray optics does offer a the intuitively useful concepts of 

acceptance angle and numerical aperture.

As illustrated in the left figure, a ray enters into the perpendicular facet of a planar waveguide or fiber can be trapped (or 

guided) or escape into the cladding depending on the incident angle. If the incident angle is larger than certain value qa, the 

ray will escape into the core because the condition for total internal reflection is not met. This angle is called the 

acceptance angle. 
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acceptance angle. 

This angle can be calculated as follow. Let qc be the waveguide internal total reflection angle:

                                                  qc = ArcSinB n2

n1
F

 Then, the refracted angle at the facet is:

                                                 qr =
p

2
- qc =

p

2
- ArcSinB n2

n1
F

 The acceptance angle is give by Snell's law:

                                                n0 Sin@qaD = n1 Sin@qrD
                                                n0 Sin@qaD = n1 Cos@qcD
 We can approximate:            n0 Sin@qaD = n1 1-

n2
2

n1
2
= n1

2 - n2
2 > e1 - e2

 Since n0 of air is ~ 1, we can also write:   Sin@qaD = > e1 - e2

What if e1 - e2 >1?

In[3]:= e2 = 1.3 ;

ManipulateBPlotB:0.5-
e1- e2

1+ e2- e1
x, -0.5+

e1- e2

1+ e2- e1
x>,

8x, -3, 0<, Filling Æ 81 Æ 882<, 8Hue@0.6, 0.4, 1D<<<
, PlotRangeÆ 88-3, 0<, 8-3, 3<<F

, 8e1 , 1.4, 2.5<, AnimationRunning Æ FalseF
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The quantity n0 Sin@qaD is a measure of low large the the angular opening of the waveguide to accept (or to radiate) the 

beam. Thus, a concept is used to describe the quantity: numerical aperture or NA.

The light 

Skew rays propagate without passing through the center axis of the fiber.
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Skew rays propagate without passing through the center axis of the fiber.

The acceptance angle for skew rays is larger than the acceptance angle of meridional rays. This condition explains why 

skew rays outnumber meridional rays. Skew rays are often used in the calculation of light acceptance in an optical fiber. 

The addition of skew rays increases the amount of light capacity of a fiber. In large NA fibers, the increase may be 

significant. 

The addition of skew rays also increases the amount of loss in a fiber. Skew rays tend to propagate near the edge of the 

fiber core. A large portion of the number of skew rays that are trapped in the fiber core are considered to be leaky rays. 

Leaky rays are predicted to be totally reflected at the core-cladding boundary. However, these rays are partially refracted 

because of the curved nature of the fiber boundary. Mode theory is also used to describe this type of leaky ray loss.
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The main result of skew ray is that because it can bounce around with a larger angle (glancing blow), with the skew angle 

g, it has a larger acceptance angle:

                                           n0 Sin@qasD = n1

Cos@gD 1-
n2

2

n1
2
=

1

Cos@gD n1
2 - n2

2

In other words, it increases by the term 1

Cos@gD . 
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2. Planar dielectric waveguide or slab waveguide

2.1 General concept of planar dielectric waveguide

A stack of layers of dielectric materials (arbitrary number of layers) can form a waveguide as long as it has EM solutions 

that propagate in the plane of the layers.

How do we know it functions as a waveguide? we must solve the wave equation (from the Maxwell's equations) and see if 

a propagating mode exists.

The general wave equation is:

“2 E +
w2

c2
eHx, y, zL E = 0              (2.1a)

“2 H +
w2

c2
eHx, y, zL H = 0            (2.1b)

In a waveguide, the dielectric is a constant along one dimension, say z. If the waveguide solution exists, then the electric 

field can be written:
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field can be written:

EHx, yL ‰Â Hb z-w tL, where b, called the propagation constant is unknown. w is the frequency of light, which is given. 

The wave equation becomes:

∑2E

∑x2
+

∑2E

∑y2
- Kb2 -

w2

c2
eHx, yLO E = 0             (2.2)

1- If a solution of Eq. (2.2) exists, it is called a mode of the structure 

2- Eq. (2.2) may have many solutions or none

3- A solution may have a unique value of b, or a continuous range of value of b

3- The mode is called a propagating wave if Re[b]∫0

Ex. 2.1 What does the wave „‰Hb z-w tL look like for:
1. b=1
2. b=1+ ‰ 0.05
2. b= ‰ 0.05

In[5]:= b = 1 ; w = 2p ;

AnimateAPlotA ReA„‰ Hb z -w tL E, 8z, 0, 50<, ImageSizeÆ 8600, 100<,
PlotRangeÆ 880, 50<, 8-1, 1<<, Frame Æ True, AspectRatioÆ 0.1, Filling Æ AxisE

, 8t, 0, 1<, AnimationRunning Æ False

E
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In[7]:= b = 1+ ‰ 0.05; w = 2p ;

AnimateAPlotA ReA„‰ Hb z -w tL E ê. 8b Æ 1+ ‰ 0.05,w Æ 2p < , 8z, 0, 50<, ImageSizeÆ 8600, 100<,
PlotRangeÆ 880, 50<, 8-1, 1<<, Frame Æ True, AspectRatioÆ 0.1, Filling Æ AxisE

, 8t, 0, 1<, AnimationRunning Æ False

E

Out[8]=
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b = ‰ 0.05; w = 2p ;

AnimateAPlotA ReA„‰ Hb z -w tL E, 8z, 0, 50<, ImageSizeÆ 8600, 100<,
PlotRangeÆ 880, 50<, 8-1, 1<<, Frame Æ True, AspectRatioÆ 0.1, Filling Æ AxisE

, 8t, 0, 1<, AnimationRunning Æ False
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Ex. 2.2  Plot 3D the wave „-x2ëw2
„‰Hb z-w tL for:

b=1 and w=2. 

b = 1 ; w = 2p ; w = 2. ;

AnimateBPlot3DB „-x2ëw2
ReA„‰ Hb z -w tL E, 8x, -5, 5<, 8z, 0, 50<,

H* ImageSizeÆ 8400,400<, *LMeshÆ False, PlotRangeÆ 88-5, 5<, 80, 50<, 8-1, 1<<
, PlotPointsÆ 820, 150<, BoxRatiosÆ 81, 5, 1<, ViewPoint Æ 85, 8, 4<F,

8t, 0, 1< , AnimationRunning Æ FalseF

t
0
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Ex. 2.3  What is the wave „-x2ëw2
„-‰Hb z+w tL realtive to that of „-x2ëw2

„‰Hb z-w tL ? In other words, what 
does the sign of b signify?

In[9]:= b = 1 ; w = 2p ; w = 2. ;

AnimateBPlot3DB „-x2ëw2
ReA„-‰ Hb z +w tL + „‰ Hb z -w tLE, 8x, -5, 5<, 8z, 0, 50<,

H* ImageSizeÆ 8400,400<, *LMeshÆ False, PlotRangeÆ 88-5, 5<, 80, 50<, 8-2, 2<<
, PlotPointsÆ 820, 150<, BoxRatiosÆ 81, 5, 1<, ViewPoint Æ 85, 8, 4<F,

8t, 0, 1< , AnimationRunning Æ FalseF

Out[10]=

t
0

2.2 An example: 3-layer symmetric slab waveguide

In practice, for complex design, Eq. (2.2) above can be solved by numerical method. Analytical approach is useful to 

illustrate the qualitative aspect of the dielectric waveguide behavior. Here, we will look at the simplest 3-layer symmetric 

slab waveguide
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Consider the trivial case of symmetric 3 layers with indices e1 (cladding) and e2 (core). 

à 2.2.1 Solutions in each layer

Equations (2.2) becomes

∑2E

∑x2 - Kb2 -
w2

c2 eHxLO E = 0             (2.3)

which has two cases:

1- If x is in the core:

 
∑2E

∑x2
- Kb2 -

w2

c2
e2O E = 0               (2.4.a)

2- If x is in the cladding:

 ∑
2E

∑x2
- Kb2 -

w2

c2
e1O E = 0               (2.4.b)

DSolveA∂x,x Ef @xD + k2
2 Ef @xD ä 0, Ef@xD, x E

88Ef HxLØ c1 sinHk2 xL + c2 cosHk2 xL<<

TrigToExp @88Ef HxL Æ c1 sinHk2 xL + c2 cosHk2 xL<<D
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DSolveA∂x,x Ef @xD + k1
2 Ef @xD ä 0, Ef@xD, x E

88Ef HxLØ c1 sinHk1 xL + c2 cosHk1 xL<<

DSolveA∂x,x Ef @xD - k1
2 Ef @xD ä 0, Ef@xD, x E

99Ef HxLØ c1 ‰
k1 H-xL + c2 ‰

k1 x==

The solutions are:

                                ycore;A@xD = ‰Â k2 x; ycore;B@xD = ‰-Â k2 x      (2.5) 

in the core, where                   k2 = e2 k0
2 - b2                   (2.5a)

and

                                 yclad;A@xD = ‰Â k1 x; yclad;B@xD = ‰-Â k1 x       (2.6)

for radiating wave in the cladding;  k1 = e1 k0
2 - b2           (2.6a)

OR

                                 yclad;A@xD = ‰ k1 x; yclad;B@xD = ‰- k1 x       (2.7)

for evanescent wave (bounded) in the cladding 

                                        k1 = b2 - e1 k0
2  .                        (2.7a)

For waveguide mode (bounded), we expect only solutions Eq. (2.7)      

The E or H field (TE or TM):

                                          HE or H L = F@xD ‰ÂHb z-w tL y
`
.          (2.8a)

where:

                                      F@xD = cA yA@xD + cB yB@xD               (2.8b)

or:                                 F@xD = H yA@xD yB @xDL .
cA

cB
         (2.8c)

Remember that we don't have to keep the term ‰ÂHb z-w tL because it is the same everywhere.

à 2.2.2 Boundary condition

We have the solutions ‰≤Â k2 x and and ‰≤Â k1 x or ‰≤ k1 x , does this mean that the problem is solved? Obviously not, because 

we still don't have specific solutions. These are general solutions in EACH region. They must still match each other at the 

boundary.
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For dielectric media, surface charge and surface current are zero. The boundary conditions are:

                                                           “. D = 0 ; “. B = 0 ;                    (2.9)

For normal component of E field: ¶1 E1 = ¶2 E2;  (D = ¶ E)              (2.10)

and H field:                                     m1 H1 = m2 H2  (B = mH)           (2.11)

For most nonmagnetic media, m=1, so rarely do we have discontinuity of H across an interface.

For tangential E field, the component is continuous:

                                                           E1 = E2                           (2.12)

and for zero surface current, so is the H field:

                                                             H1 = H2                         (2.13)

Any polarization can be split into 2 components:  TE: transverse electric or TM: transverse magnetic
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2.3 Boundary conditions for different polarizations 

à 2.3.1 TE mode

à 2.3.2 TM mode

à 2.3.3 Equations for solutions

The solution is obtained by satisfying all boundary conditions. Each boundary condition gives a set of equation. Various 

coefficients will be determined by the Eqs.

2.4 Bounded mode TE

à 2.4.1 Characteristic equation

The S matrix for the core: 
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FullSimplify B „‰ k2 Hx+LL „-‰ k2 Hx+LL

‰ k2 „
‰ k2 Hx+LL -‰ k2 „

-‰ k2 Hx+LL . InverseB „‰ k2 x „-‰ k2 x

‰ k2 „
‰ k2 x -‰ k2 „

-‰ k2 x
FF

cosHL k2L sinIL k2M
k2

-sinHL k2L k2 cosHL k2L

Notice that the S matrix has translational symmetry.

This connect the left and the right of the core region:  

S2 =
cosHL k2L sinIL k2M

k2

-sinHL k2L k2 cosHL k2L
For TE mode, the interface M matrix is unity. The eigen equation is:   

yA
right most@x1D yB

right most@x1D
∑x yA

right most@x1D ∑x yB
right most@x1D .

cAn

cBn
=

STotal
yA

left most@x1D yB
left most@x1D

∑x yA
left most@x1D ∑x yB

left most@x1D .
cA1

cB1

Here is a way to choose neat solution:

 yA
rightmost@xD = ‰ k1Hx-LL ; yB

rightmost@xD = ‰- k1Hx-LL

 yA
left most@xD = ‰ k1 x ; yB

left most@xD = ‰- k1 x

1 1

k1 -k1
.

0

cright
=

cosHL k2L sinIL k2M
k2

-sinHL k2L k2 cosHL k2L
.

1 1

k1 -k1
.

cleft

0

0
cright

== FullSimplify BInverseB K 1 1
k1 -k1

OF. cosHL k2L sinIL k2M
k2

-sinHL k2L k2 cosHL k2L
. K 1 1

k1 -k1
OF. cleft

0

0

cright
==

cleft cosHL k2L + sinIL k2M Ik12-k2
2M

2 k2 k1

sinIL k2M cleft Ik2
2+k1

2M
2 k2 k1

There are 2 equations. For the first one, the only way we have a non-trivial solution is:

                                                                 cosHL k2L+ sinIL k2M Ik1
2-k2

2M
2 k2 k1

= 0.

This is the characteristic equation: it says that we can't just choose arbitrary value of b to satify the wave equation. 
There is a unique propagation constant for each mode.

 What does the second equation give us?
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 What does the second equation give us?

                                                    cright = cleft
sinIL k2M Ik2

2+k1
2M

2 k2 k1

a proportional relation between cright and cleft: we can choose an arbitrary cleft, then cright is fixed or vice versa. The wave 

amplitude is fixed relatively between sections, there is ONLY ONE arbitrary amplitude for the whole wave, as it should be.

There are several way to express the same characteristic equation:

Cos@L k2D
Sin@L k2D

==
Ik2

2 - k1
2M

2 k2 k1

cotHL k2L ==
k2

2 - k1
2

2 k2 k1

cosHL k2L +
sinHL k2L Ik1

2 - k2
2M

2 k2 k1

== 0 ê. L -> 2 a

cosH2 a k2L +
sinH2 a k2L Ik1

2 - k2
2M

2 k2 k1

== 0

TrigExpandBcosH2 a k2L +
sinH2 a k2L Ik1

2 - k2
2M

2 k2 k1

F

cos2Ha k2L +
sinHa k2L k1 cosHa k2L

k2

-
sinHa k2L k2 cosHa k2L

k1

- sin2Ha k2L

Factor@%D

HcosHa k2L k1 - sinHa k2L k2L HcosHa k2L k2 + sinHa k2L k1L
k2 k1

HcosHa k2L k1 - sinHa k2L k2L HcosHa k2L k2 + sinHa k2L k1L == 0

We notice that this means this single characteristic equation gives us 2 separate characteristic sub-equations: 

                                    cosHa k2L k1 - sinHa k2L k2 = 0 

AND                           cosHa k2L k2 + sinHa k2L k1 = 0

What is the meaning of this? It means that there are two classes of modes and solutions, one for each equation. But why? 
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What is the meaning of this? It means that there are two classes of modes and solutions, one for each equation. But why? 

because of symmetry: in any quantum problem, if we have symmetry, we have a subset of eigensolutions that belong to an 

eigenspace of that geometry. Similarly here, we have a symmetric waveguide, which has the reflection symmetry that have 

even solution: F[x]=F[-x] or odd solution F[x]=-F[-x]: We can guess that each "sub-characteristic" equation is for each 

class of modes and solutions.

If fact, the even solutions are: Cos@k2 xD  in the core. At the core boundary:

Cos@k2 aD
-k2 Sin@k2 aD . In the cladding, the solution is C ‰-k1Hx-aL : At the cladding boundary: 

C

-C k1
. Choose C =Cos@k2 aD, 

the equation is:
Cos@k2 aD

-k2 Sin@k2 aD =
Cos@k2 aD

-Cos@k2 aD k1

Obviously, the charac. eq. is: k2 Sin@k2 aD =Cos@k2 aD k1 or Cos@k2 aD k1 - k2 Sin@k2 aD = 0 . We can similarly verify the 

same for odd solutions.

In[17]:= ResolvTE@nindex_List, a_,l_, neff_D := Module@8e1, e2, k1, k2, k0<,
8e1, e2< = nindex^2 ; k0 = 2 *Pi ê l;

k1 = k0 *Sqrt@Abs@neff ^2 - e1 D D; k2 = k0 * Sqrt@Abs@e2- neff ^2D D ;

HcosHa k2L k1- sinHa k2L k2L HcosHa k2L k2 + sinHa k2L k1L D ;

indexprof = 83.4, 3.5< ; a = 2.5 ; l = 1.5 ;

Plot@ResolvTE@indexprof, a, l, xD, 8x, 3.4, 3.5<D

3.42 3.44 3.46 3.48 3.50

-6

-4

-2

2

4

6

The roots of the equation are where the function crosses the horizontal axis, which is ==0 . These are discrete modes 

of the waveguide.
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FindRoot@ResolvTE@83.4, 3.5<, 2.5, 1.5,nD == 0, 8n, 3.42, 3.44<D

8nØ 3.43683<

1- This value n (example is 3.43683 above) is called the MODE EFFECTIVE INDEX.

                                             neff =
b

k0

In other words, the mode acts as if it sees this index value in the waveguide.
2- Each mode has its own index, different from each other
3- The speed of propagation is:  v =

c

neff
 , hence different modes move at different speeds. 

This causes INTERMODAL DISPERSION. If a light pulse is a linear combination of many 
modes, each modal component will move at its own speed, and after awhile, be out of step 
with others.

à 2.4.2 EM field

à 2.4.3 Illustration: what does the "profile" looks like

à 2.4.4 Traveling electric field

à 2.4.5 Vector graphics

à 2.4.6 Field lines

2.5 Bounded mode TM

3. Key concepts of waveguide
Although we study a particular waveguide geometry above, the slab waveguide, several important concepts are applicable 

to any waveguide, and can be illustrated with the slab waveguide.

3.1 Intensity and energy flow

à 4.1.1 Energy flow: Poynting vector - TE mode

Intensity inside a waveguide is obtained by evaluating the Poynting vector. The time-averaged Poynting vector is:  

                                            XS\= c

8p
ReB E

Ø

µH*
Ø F                         (3.1)
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Consider the example of slab waveguide.

For TE mode:

                                  E
Ø

 = E@x, zD y
`
‰-Â w t                                                   (3.2)

                                H
Ø

= -
Â

m k0
“µE

Ø

=

x
`

y
`

z
`

∑x ∑y ∑z

0 Ey 0

= -
Â

m k0
I x
`

y
`

z
` M

-∑z Ey@x, zD
0

∑x Ey@x, zD
‰-Â w t

                   (3.3)

                   XS\ = c

8p
ReB E

Ø

µH*
Ø F

=
c

8p

1

m k0
Re

x
`

y
`

z
`

0 Ey 0

-Â ∑z Ey
*@x, zD 0 Â ∑x Ey

*@x, zD

       (3.4)

DetB
x
`

y
`

z
`

0 Efy@x, zD 0

-‰ ∂z Ef y
*@x, zD 0 ‰ ∂x Ef y

*@x, zD
F

Â z
`
EfyHx, zL IIEfyM*MH0,1L Ix, zM + Â x

`
EfyHx, zL IIEfyM*MH1,0L Ix, zM

                     XS\ = c êH8pL ReB E
Ø

µH*
Ø F

=
c

8p m k0
ReB x

`
Â EyHx, zL ∑ Ey

*

∑ x
+ z
`
Â EyHx, zL ∑ Ey

*

∑ z
F
        (3.5)

Is it possible for a net energy to flow along x direction? Intuitively, no. The energy can bounce back and forth from within 

the waveguide, but the net roundtrip (or the total space average) must be zero. 

If EyHx, zL is real, then so is 
∑ Ey

*

∑ x
  and ReB x

`
Â EyHx, zL ∑ Ey

*

∑ x
F = 0: Obviously the intensity along x direction = 0. But the 

principle must be true much more generally, not for just this case of TE mode and real EyHx, zL.
The intensity of the z-traveling component is given by:

                       XS\.z` =
c

8p m k0
ReB Â EyHx, zL ∑ Ey

*

∑ z
F                            (3.6)

and the power is given by:  

            P = Ÿ-¶¶ XS\.z` „ x =
c

8p m k0
Ÿ-¶¶ ReB Â EyHx, zL ∑ Ey

*

∑ z
F „ x        (3.7)

For mode m:   

                                  
∑ Ey

*

∑ z
= -Â bm ‰

-Â bm z Em
*@xD                                      (3.8)

The intensity is:
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The intensity is:

                            XS\.z` =
c

8p m k0
bm H Em@xD L^2

=
c neff;m

8p m
H Em@xD L^2

                                (3.9)

                                       P =
c neff;m

8p m
Ÿ-¶¶ H Em@xD L2 „ x                               (3.10)

These expressions are very similar to planewave, with the difference being the effective index, which is mode-dependent.

This is the reason why normalization with respect to power is slightly different from normalization with respect to 

wavefunction:

For just wavefunction:             Ÿ-¶¶ H Em@xD L^2 = 1.                            (3.11a)

For power:                         neff ;m Ÿ-¶¶ H Em@xD L^2„ x = 1                    (3.11b)

(all other constants are dropped for convenient).

Either way is fine as long as one remembers what to use in each calculation.

à 4.1.2 For TM mode

                  XS\ = c

8p

1

e k0
ReA-Â x

`
Hy

* Hy
H1,0LHx, zL - Â z

`
Hy

* Hy
H0,1LHx, zLE    (3.12)

The intensity is given by:  

                                        XS\.z` =
c

8p e k0
ReB-ÂHy

*Hx, zL ∑ Hy

∑ z
F            (3.13)

Now we need to convert to Ex:

                                  Ex = -
Â

e k0
∑z Hy@x, zD .                           (3.14)

 For a given mode m: 

                                     Em;x = -
Â

e k0
Â bm Hy@x, zD

=
bm

e k0
Hy@x, zD =

neff;m

e
Hy@x, zD

       (3.15)

Thus:                                    Hy@x, zD = e

neff;m
Em;x .                               (3.16)

Then: 

                                    XS\.z` =
c

8p

e

neff;m
ReA Em;x

* Em;xE
=

c

8p

e

neff;m
I Em;x M2

              (3.17)

Indeed that the intensity for TM mode is proportional to the transverse component of the electric field, as expected. 

The power of the mth mode is given by:  

                       Pm = Ÿ-¶¶ XSm\.z` „ x =
c

8p neff;m
Ÿ-¶¶ e@xD I Em;x M2 „ x       (3.18)
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Notice that Ÿ-¶¶ e@xD I Em;x M2 „ x can be written as:  

                         Ÿ-¶¶ e@xD I Em;x M2 „ x =
Ÿ-¶¶ e@xD I Em;x M2 „x

Ÿ-¶¶ I Em;x M2 „x
Ÿ-¶¶ I Em;x M2 „ x

= Xe\ Ÿ-¶¶ I Em;x M2 „ x

     (3.19)

where  Xe\ is the spatial average of e. Thus:

                                                    Pm =
c

8p

Xe\
neff;m

Ÿ-¶¶ I Em;x M2 „ x .               (3.20)

Notice the suttle difference in the power expression of TE and TM mode. The ratio Xe\
neff;m

can be considered as a modal 

average index.

à 4.1.3: In the lab: intensity plot

In the lab, if we look at a waveguide facet, what to we see? We see the intensity. 

alldp = 8<;
For@i = 1, i < Length@neffD+ 1, i++,

DensityPlot@neff@@iDD *Abs@FieldTE@nindex, a, l, neff@@iDD, xD@@1DDD^2, 8y, 0, 20<
, 8x, -4, 4<

, PlotPoints-> 82, 202<, Mesh-> False
, ImageSize-> 8700, 200<D

D
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We recall earlier that for some TM mode, if the index difference is large, the E field leakage is also quite large. We can see 

how it is in this example
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In[12]:= nindex = 81, 3.5<; a = 0.5 ; l = 1.5 ;
Plot@ResolvTM@nindex, a, l, xD, 8x, nindex@@1DD, nindex@@2DD<D

Out[13]=

1.5 2.0 2.5 3.0 3.5

-10 000

-5000

5000

10 000

15 000

segment2= 83.49, 3.4, 3, 2.5, 1.5, 1.01<; neff = 8< ;

For@ i = 1, i < Length@segment2D, i++,

AppendTo@neff,

x ê. FindRoot@ResolvTM@nindex, a, l, xD == 0, 8x, segment2@@i + 1DD, segment2@@iDD<D
D D

neff

83.42062, 3.1713, 2.70932, 1.91369, 1.02868<

alldp = 8<;
Eps@x_D := If @Abs@xD <= a, nindex@@2DD^2, nindex@@1DD^2D;
For@i = 1, i < Length@neffD+ 1, i++,

DensityPlot@HEps@xD ê neff@@iDDL * Abs@FieldTM @nindex, a, l, neff@@iDD, xD@@3DDD^2, 8y, 0, 20<
, 8x, -1.5, 1.5<

, PlotPoints-> 82, 200<, Mesh-> False
, ImageSize-> 8700, 200<D

D
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3.2 Confinement factor

An important concept (for all waveguide, not just slab): confinement factor: How much of the electric field is really in the 

core region? The fraction of the field in the core is called the confinement factor. (in complex structure, we need to define 

what "core" region is the region of our interest) 

                                
Ÿcore
Ñ H E@x,yD L2 „x „y

Ÿall
Ñ H E@x,yD L2 „x „y

            (3.21)
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3.3 Multi-mode propagation

à 3.3.1 Concept

If we launch an optical beam into a multimode waveguide, what do we get out at the other end? Again we apply the 

principle of linear superposition:

                                                     F@xD =⁄m=1
N am Fm@xD .                         (3.22)

We can represent the input signal as a finite-rank vector: 

Φ =

a1
a2
.
aN

. The full expression of the electric field is: 

                    E=⁄m=1
N am Em@xD ‰Â Hbm z-w tL = ‰-Â w t ⁄m=1

N am Em@xD ‰Â bm z    (3.23)

We notice one very important feature: we cannot separate the x and z dependent component of the net field E anymore. 

Thus:          while          the      z-dependent                     and       the      x-dependent                     component                   can       be     separated                 for      every          eigenmode                   of     the      waveguide,                    they        

can      not       be     so     for      any       arbitrary               wave.

The reason is modal dispersion as discussed above: each mode has a different propagation constant bm. 

What does this entail? Remember how when you add waves together, not only amplitude but also phase is very important? 

Let's consider the input signal at z=0: 

                                        E@x, z= 0D = ‰-Â w t ⁄m=1
N am Em@xD .              (3.24)

At z=L, we have:

                                       E@x, z= LD = ‰-Â w t ⁄m=1
N am ‰

Â bm L Em@xD
= ‰-Â w t ⁄m=1

N am ' Em@xD
        (3.25)

where                                                am '= am ‰
Â bm L.

Thus, the profile E@x, z= LD can be very different from that at z=0.

This very important aspect is the foundation for waveguide circuit: modulate and control of light path through waveguide.

à 3.3.2 Example

Consider a slab waveguide with 2 modes:
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In[24]:= nindex = 81.4, 1.5<; a = 1.25 ; l = 1.5 ;
Plot@ResolvTE@nindex, a, l, xD, 8x, nindex@@1DD, nindex@@2DD<D

Out[25]=
1.42 1.44 1.46 1.48 1.50
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In[26]:= segment= 81.49, 1.46, 1.42<; neff = 8< ;

For@ i = 1, i < Length@segmentD, i++,

AppendTo@neff,

x ê. FindRoot@ResolvTE@nindex, a, l, xD == 0, 8x, segment@@i + 1DD, segment@@iDD<D
D D

In[28]:= neff

Out[28]= 81.48382, 1.43829<

Let's look at the waveguide mode 
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Plot@8FieldTE@nindex, a, l, neff@@1DD, xD@@1DD
, FieldTE@nindex, a, l, neff@@2DD, xD@@1DD<, 8x, -6, 6<

, PlotRange-> 8-1., 1<, PlotStyle-> 88Hue@0.2, 1, 0.8D<, 8Hue@0.8, 1, 0.8D<<D

-6 -4 -2 2 4 6

-1

-0.75

-0.5

-0.25
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1

ÜGraphicsÜ

At z=0, let's have a wave that consists of half and half of the low mode and the high mode:

w = 0.5;
Plot@8w * FieldTE@nindex, a, l, neff@@1DD, xD@@1DD

+ H1- wL * FieldTE@nindex, a, l, neff@@2DD, xD@@1DD<, 8x, -4, 4<
, PlotRange-> 8-1., 1<, PlotStyle-> 88Hue@0.2, 1, 0.8D<, 8Hue@0.8, 1, 0.8D<<D
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1

ÜGraphicsÜ
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What does this wave look like as it propagates along the waveguide?

At z= 0:

E@x, z = 0D = 1

2
‰-Â w tJE1@xD + E2@xD N

E@x, z = LD = 1

2
‰-Â w tJ‰Â b1 L E1@xD + ‰Â b2 L E2@xD N

                  =
1

2
‰-Â w t ‰Â b1 LJ E1@xD + ‰Â Ib2-b1M L E2@xD N

What happens at z=L when ‰Â Ib2-b1M L = ‰Â p ? 

E@x, z = LD = 1

2
‰-Â w t ‰Â b1 LJ E1@xD - E2@xD N

Let's compare the field profile at z=0 and z=L, dropping the oscilling term ‰-Â w t ‰Â b1 L :

w = 0.5;
Plot@8w * FieldTE@nindex, a, l, neff@@1DD, xD@@1DD

+ H1- wL * FieldTE@nindex, a, l, neff@@2DD, xD@@1DD
, w * FieldTE@nindex, a, l, neff@@1DD, xD@@1DD

- H1- wL * FieldTE@nindex, a, l, neff@@2DD, xD@@1DD<, 8x, -4, 4<
, PlotRange-> 8-1., 1<, PlotStyle-> 88Hue@0.2, 1, 0.8D<, 8Hue@0.8, 1, 0.8D<<D
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ÜGraphicsÜ

Remarkable: this tells us that the profile changes quite a bit as the wave propagates: it is not always a constant profile wave 

in a waveguide! What if it keeps on going?

E@x, z = 2 LD = 1

2
‰-Â w t ‰Â 2 b1 LJ E1@xD + ‰Â 2 Ib2-b1M L E2@xD N

and ‰Â Ib2-b1M L = ‰Â p : E@x, z= 2 LD = 1

2
‰-Â w t ‰Â 2 b1 LJ E1@xD + E2@xD N: we are back to square one again.

We can see all this by looking at its intensity. From the above expression of the Poynting vector: 
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We can see all this by looking at its intensity. From the above expression of the Poynting vector: 

XS\.z` =
c

8p m k0
ReB Â EyHx, zL ∑ Ey

*

∑ z
F

EyHx, zL = w Ey;1HxL ‰Â b1 z + H1- wL Ey;2HxL ‰Â b2 z

∑ Ey
*

∑ z
= -Â b1 w Ey;1HxL ‰-Â b1 z - Â b2H1-wL Ey;2HxL ‰-Â b2 z

Â EyHx, zL ∑ Ey
*

∑ z
= Iw Ey;1HxL ‰Â b1 z + H1- wL Ey;2HxL ‰Â b2 z M

Ib1 w Ey;1HxL ‰-Â b1 z + b2H1-wL Ey;2HxL ‰-Â b2 z M

w =.;

ExpandAIw Ef y;1HxL „‰ b1 z + u Ef y;2HxL „‰ b2 z M
Ib1 w Ef y;1HxL „-‰ b1 z + b2 u Ef y;2HxL „-‰ b2 z ME

w2 b1 Ef1HxL2 + ‰Â z b2-Â z b1 u w b1 Ef2HxL Ef1HxL + ‰Â z b1-Â z b2 u w b2 Ef2HxL Ef1HxL + u2 b2 Ef2HxL2

Â EyHx, zL ∑ Ey
*

∑ z
= w2 b1 Ef1HxL2 + u2 b2 Ef2HxL2

+I‰Â zI b2- b1M b1 + ‰-Â zI b2- b1M b2M u w Ef2HxL Ef1HxL
There is a real term: w2 b1 Ef1HxL2 + u2 b2 Ef2HxL2 which is the individual sum of the intensity of each component. But 

more importantly, there is the interference term:

I‰Â zI b2- b1M b1 + ‰Â zI b2- b1M b2M u w Ef2HxL Ef1HxL. 
What is the effect of this interference term? Let's plot it out:
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In[29]:= w = 0.5; b =
2p

l
neff;

Plot3DAReAIw * FieldTE@nindex, a, l, neff@@1DD, xD@@1DD „‰ b@@1DD z

+ H1- wL * FieldTE@nindex, a, l, neff@@2DD, xD@@1DD „‰ b@@2DD zM *
Iw * b@@1DD * FieldTE@nindex, a, l, neff@@1DD, xD@@1DD „-‰ b@@1DD z

+ H1- wL * b@@2DD * FieldTE@nindex, a, l, neff@@2DD, xD@@1DD „-‰ b@@2DD zM
E

, 8z, 0, 30<, 8x, -2.5, 2.5<, PlotPoints-> 8120, 40<
, PlotRange-> All, Mesh -> False, BoxRatios-> 830, 5, 5<,

ViewPoint -> 80, 0, 5<E

Out[30]=
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Notice what happens: the wave seems to move from right side of the waveguide to left and back to right again and so on... : 

this is the behavior of a ray that bounces back and forth between the two boundary surface. Where is the shift maximum?
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L =
p

Abs@Hb@@2DD - b@@1DDLD

16.4728

What is a Db coupler? why is it called Db?

We have a waveguide with this property: cladding index= 1.4 ; thickness 2.5 um, the core index can be 
tuned with an external electric field from 1.43 to 1.5. A beam with 1.5 um wavelength is coupled to one 
side of the waveguide (mode1 + mode2), how does the external electric field can change its propagation 
property?

nindex = 81.4, ncore<; a = 1.25 ; l = 1.5 ; allp = 8<;
For@i = 1, i < 12, i++, 8ncore= 1.45+ Hi - 1L * H1.55- 1.45L ê 10;

AppendTo@allp,

Plot@ResolvTE@81.4, ncore<, a, l, xD, 8x, 1.4, ncore<, DisplayFunction -> Identity DD
<D
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Show@allp, DisplayFunction -> $DisplayFunctionD

1.42 1.44 1.46 1.48

-4

-2
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4

ÜGraphicsÜ
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nindex = 81.4, 1.45<; a = 1.25 ; l = 1.5 ;
Plot@ResolvTE@nindex, a, l, xD, 8x, nindex@@1DD, nindex@@2DD<D

1.41 1.42 1.43 1.44 1.45

-1

-0.5

0.5

1

ÜGraphicsÜ

segment= 81.44, 1.43, 1.401<; neff = 8< ;

For@ i = 1, i < Length@segmentD, i++,

AppendTo@neff,

x ê. FindRoot@ResolvTE@nindex, a, l, xD == 0, 8x, segment@@i + 1DD, segment@@iDD<D
D D

neff

81.43671, 1.40476<
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w = 0.5; b =
2p

l
neff;

plot1 = Plot3DAReAIw * FieldTE@nindex, a, l, neff@@1DD, xD@@1DD „‰ b@@1DD z

+ H1- wL * FieldTE@nindex, a, l, neff@@2DD, xD@@1DD „‰ b@@2DD zM *
Iw * b@@1DD * FieldTE@nindex, a, l, neff@@1DD, xD@@1DD „-‰ b@@1DD z

+ H1- wL * b@@2DD * FieldTE@nindex, a, l, neff@@2DD, xD@@1DD „-‰ b@@2DD zM
E

, 8z, 0, 30<, 8x, -2.5, 2.5<, PlotPoints-> 8120, 40<
, PlotRange-> All, Mesh -> False, BoxRatios-> 830, 5, 5<,

ViewPoint -> 80, 0, 5<E

ÜSurfaceGraphicsÜ

nindex = 81.4, 1.55<; a = 1.25 ; l = 1.5 ;
Plot@ResolvTE@nindex, a, l, xD, 8x, nindex@@1DD, nindex@@2DD<D

segment= 81.54, 1.5, 1.46<; neff = 8< ;

For@ i = 1, i < Length@segmentD, i++,

AppendTo@neff,

x ê. FindRoot@ResolvTE@nindex, a, l, xD == 0, 8x, segment@@i + 1DD, segment@@iDD<D
D D

neff

81.53254, 1.48146<
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w = 0.5; b =
2p

l
neff;

plot2 = Plot3DAReAIw * FieldTE@nindex, a, l, neff@@1DD, xD@@1DD „‰ b@@1DD z

+ H1- wL * FieldTE@nindex, a, l, neff@@2DD, xD@@1DD „‰ b@@2DD zM *
Iw * b@@1DD * FieldTE@nindex, a, l, neff@@1DD, xD@@1DD „-‰ b@@1DD z

+ H1- wL * b@@2DD * FieldTE@nindex, a, l, neff@@2DD, xD@@1DD „-‰ b@@2DD zM
E

, 8z, 0, 30<, 8x, -2.5, 2.5<, PlotPoints-> 8120, 40<
, PlotRange-> All, Mesh -> False, BoxRatios-> 830, 5, 5<,

ViewPoint -> 80, 0, 5<E

0 10

-2

-1

0

1

2

012

ÜSurfaceGraphicsÜ

3.4 Modal dispersion

How does the b depend on w?

nindex = 81.4, 1.5<; a = 1.25 ;
c = 2.99792458 ;
plot1 = Plot3D@ResolvTE@nindex, a, c ê f , xD,

8x, nindex@@2DD - 0.005, nindex@@1DD+ 0.005<,
8 f , 2, 4.<, PlotPoints-> 870, 30<, DisplayFunction -> Identity D ;

plot2 = Plot3D@0,

8x, nindex@@2DD - 0.005, nindex@@1DD + 0.005<,
8 f , 2, 4.<, PlotPoints-> 2, DisplayFunction-> Identity D ;

Show@plot1, plot2, DisplayFunction-> $DisplayFunction,

ImageSize-> 8500, 500<, BoxRatiosÆ 81, 1, 1<, ViewPoint -> 82, -5, 3<D
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Linked to Fig. 4.4.1

ÜGraphics3DÜ

Plots of b[w] or neff@wD or b[f] or neff@ f D  or  b[l] or neff@lD  are called dispersion curves.
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nindex = 81.4, 1.5<; a = 1.25 ;
c = 2.99792458 ;
plot1 = Plot3D@ResolvTE@nindex, a, l, xD,

8x, nindex@@2DD - 0.005, nindex@@1DD+ 0.005<,
8l, 0.75, 1.5<, PlotPoints-> 870, 30<, DisplayFunction -> Identity D ;

plot2 = Plot3D@0,

8x, nindex@@2DD, nindex@@1DD<,
8l, 0.75, 1.5<, PlotPoints-> 2, DisplayFunction-> Identity D ;

Show@plot1, plot2, DisplayFunction-> $DisplayFunction,

ImageSize-> 8500, 500<, BoxRatiosÆ 81, 1, 1<, ViewPoint -> 82, -5, 3<D
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We would expect that b@wD = 2p neff @wD
l

=
w neff @wD

c
º

w Xe\
c

where Xe\ is some sort of averaged dielectric constant of the 

waveguide, because neff @wD is approximately the modal average of the entire dielectric constant 

profile:

neff;m@wD º Ÿ-¶¶ e@xD H Em@xD L2 „x

Ÿ-¶¶ H Em@xD L2 „x
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@ D Ÿ @ D H @ D L
Ÿ H @ D L

However, as the frequency change, the mode profile changes, and neff @wD is not constant for each mode. Recalling what we 

define as dispersion:

InverseGVDterm = ∂ω

ω neff@ωD

c
;

dispersion = ∂ω,ω

ω neff@ωD

c

2 neff
£ HwL
c

+
w neff

≥ HwL
c

InverseGVDterm

neff HwL
c

+
w neff

£ HwL
c

We see that the FIRST order derivative of neff @wD already contributes to the dispersion term. This term 
2 neff

£ HwL
c

+
w neff

≥ HwL
c

 is 

called modal dispersion, if we exclude the contribution of material dispersion from neff
£ HwL and neff

≥ HwL. Thus, by virtue of 

the change of the mode profile vs. w, we have a change of neff @wD that gives modal dispersion.
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