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Types of Current 

c
vJ vρ=

iJ
cJ

impressed current (source) 

conduction (ohmic) current 

Linear medium: 
cJ Eσ= (Ohm’s law) 

Note: The electric field is set up in response to the impressed current source. 

Note: The free-charge density ρv refers to those 
charge carriers (either positive or negative) that 
are free to move (usually electrons or ions). It is 
zero for perfect insulators. 

iJ
cJ

vρ

              2 



Types of Current (cont.) 

Η J j Eω ε∇× = +

iΗ J E j Eσ ωε∇× = + +

Source Conduction Displacement 

Ampere’s law: 
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iJ
cJ

vρ



Effective Permittivity 

( )

ω ε

σ ωε

σ ωε

σω ε
ω

σω ε
ω

∇× = +

= + +

= + +

 
= + + 

 
 

= + − 
 

i

i

i

i

Η J j E

J E j E

J j E

J j E
j

J j j E
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i
cΗ J j Eω ε∇× = +

c jσε ε
ω

≡ −Define: 

Effective Permittivity (cont.) 

Ampere’s law becomes: 

Ampere’s law thus becomes in the same form as for free space: 

0
iH J j Eω ε∇× = +

This "effective" 
permittivity accounts 
for the conductivity. 

Note: If there is polarization loss (molecular or atomic friction), than ε 
will be complex in addition to εc. 
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Note: εc  is often called ε  for simplicity in most books. 

However, be careful! 

cD Eε≠

D Eε=

Effective Permittivity (cont.) 
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Even though the effective permittivity appears in Ampere’s law, it is the 
actual permittivity that relates the flux density to the electric field.  



Effective Permittivity Principle 

0 cε ε→

This principle allows us to solve problems involving a 
homogeneous (lossy) material, as long as we know 
how to solve the corresponding free-space problems. 

i
cΗ J j Eω ε∇× = +

0
iH J j Eω ε∇× = + (Free-space problem) 

(Material problem) 

The formulas for the fields remains the same: we simply make this simple substitution.  
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y 

z 

x 

,ε σ

1I =

Ocean 

Example 

First examine problem in free space (next slide). 

A dipole is embedded in an infinite medium of ocean water. What is 
the far-field of the dipole? 
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Example (cont.) 

Dipole in free space: 

y 

z 

x 

0 0,ε µ

1I =

r →∞As 

00
0 0 0sin ,

4
j k rjE e k

rθ
ω µ θ ω µ ε
π

−= =

r 

θ
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r →∞As 

10
1 0 1 1sin ,

4
j k r

c
jE e k k jk

rθ
ω µ θ ω µ ε
π

− ′ ′′= = = −

c jσε ε
ω

= −

Example (cont.) 

y 

z 

x 

,ε σ

1I =

Ocean 
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( )0 0r r rjε ε ε ε ε ε′ ′′= = −

Dipole in ocean: 



Loss Tangent 

c c cjε ε ε′ ′′= −

tan c

c

εδ
ε
′′

≡
′

c jσε ε
ω

= −

Write this as: 

( )

( )

Re

Im

c

c

ε ε
σε ε
ω

′ =

′′= − +

Note: The loss tangent 
combines losses from atomic 
and molecular friction together 

with loss from conductivity. 

Note: In most books, the symbol ε is used to 
denote εc in the time-harmonic steady state.  
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The loss tangent is defined as: 



Loss Tangent 
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Material  tanδ 
Water (pure) 0.156 

FR4 0.018 
Duroid board (typical) 0.001 

Polyethelene 0.00031 
Teflon 0.00014 
Quartz 0.000061 

Sapphire 0.00002 

Some Common Materials 

f = 3 GHz 



Polarization Current 

( )0 0

i
c

i

i

H J j E

J E j E

J E j E j E

ω ε

σ ω ε

σ ω ε ω ε ε

∇× = +

= + +

= + + + −

Conduction Free-space 
displacement 

Polarization 
cJ

Source 
pJ
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Four types of current density (nonmagnetic medium) 

pJcJ
iJ

vρ
Note: The free-

space displacement 
current is not an 

actual current flow. 



Polarization Current (cont.) 

Model of polarization current: 

( )x dqx N=P

( ) ( )x
d d

d dxN q N q v
dt dt

⇒ = =
P

( )p q
v dv qN vρ= =xJ

p d
dt

= x
x

P
JHence 

As the electric field changes, we imagine 
that the position x of the positive charge 
changes, with the negative charge being 
stationary. 

Nd dipoles per unit volume 
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The dipoles stretch rather than rotate. 

q x 

Ex 

v + - 

From the charge-current equation: 



Polarization Current (cont.) 

p d
dt

=
P

J

( ) ( )0 0 01p
e rJ j P j E j E j Eω ωε χ ωε ε ω ε ε= = = − = −

In general, 

Time-harmonic steady state: 

( )0
pJ j Eω ε ε= −

              15 

This agrees with the conclusion from Amperes’ law.  



Polarization Current (cont.) 

( )

0

0 0

1 i
c

i

i

B M J j E

J E j E

J E j E j E

ωε
µ

σ ωε

σ ωε ω ε ε

 
∇× − = + 

 

= + +

= + + + −

If magnetic material is present: 

( )0 0
0

1 iB J E j E j E Mσ ωε ω ε ε
µ

 
∇× = + + + − +∇× 

 

Polarization current from 
 magnetic properties 

Polarization current from 
 dielectric properties  

0

1
µ

≡ −H B M
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0

1H B M
µ

= −

LHS is that of Ampere's 
law in free space. 



Conduction 
Free-space 
displacement 

Polarization cJ

Source 

pJ
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Five types of current density 

( )0 0
0

1 iB J E j E j E Mσ ωε ω ε ε
µ

 
∇× = + + + − +∇× 

 

Magnetic 
polarization 

mpJ

pJcJ
iJ

vρ
i 

i 
mpJ

Note: The free-
space displacement 

current is not an 
actual current flow. 

Polarization Current (cont.) 



Equivalent Current 

iJ
,ε σ

Body 
c jσε ε

ω
= −

Inside the body, 

( )0 0

c

c

H j E
j E j E
ω ε
ω ε ω ε ε

∇× =

= + −

( )0
eq

cJ j Eω ε ε≡ −

Define: 

Nonmagnetic body 
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Equivalent Current (cont.) 

iJ

Interpretation: 

0 0,ε µ

eqJ

0
eqH j E Jω ε∇× = +

The body is 
replaced by its 

equivalent current in 
free space. 
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Note: The equivalent current is unknown,  
since the electric field inside the body is unknown. 



Equivalent Current (cont.) 
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The equivalent current combines the conduction current and the polarization 
current. 

( )
( )

0

0

eq
cJ j E

j E E

ω ε ε

ω ε ε σ

≡ −

= − +

c jσε ε
ω

= −

( )0
eqJ j E Eω ε ε σ= − +

Polarization current Conduction current 

so 
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