ECE 6340 Intermediate EM Waves

Fall 2016

Prof. David R. Jackson Dept. of ECE

1

Types of Current

Note: The free-charge density ρ_v refers to those charge carriers (either positive or negative) that are <u>free to move</u> (usually electrons or ions). It is zero for perfect insulators.

$$\underline{J}^{i}$$
 impressed current (source)

$$\underline{J}^{c}$$
 conduction (ohmic) current $\underline{J}^{c} = \rho_{v} \underline{v}$

Linear medium:
$$\underline{J}^c = \sigma \underline{E}$$
 (Ohm's law)

Note: The electric field is set up in response to the impressed current source.

Types of Current (cont.)

$$\underline{J}^{i} \qquad \bigcirc \circ \circ \rho_{v} \\ \underline{J}^{c} \qquad \qquad \underline{J}^{c}$$

Ampere's law:

$$\nabla \times \underline{H} = \underline{J} + j \, \omega \, \varepsilon \, \underline{E}$$

$$\nabla \times \underline{H} = \underline{J}^{i} + \sigma \, \underline{E} + j \, \omega \varepsilon \, \underline{E}$$
Source Conduction Displacement

Effective Permittivity

$$\times \underline{H} = \underline{J} + j \,\omega \,\varepsilon \underline{E}$$
$$= \underline{J}^{i} + \sigma \,\underline{E} + j \,\omega \,\varepsilon \,\underline{E}$$
$$= \underline{J}^{i} + (\sigma + j \,\omega \,\varepsilon) \,\underline{E}$$
$$= \underline{J}^{i} + j \,\omega \left(\varepsilon + \frac{\sigma}{j \,\omega} \right) \underline{E}$$
$$= \underline{J}^{i} + j \,\omega \left(\varepsilon - j \frac{\sigma}{\omega} \right) \underline{E}$$

 ∇

Effective Permittivity (cont.)

Define:
$$\mathcal{E}_c \equiv \mathcal{E} - j \frac{\sigma}{\omega}$$

This "effective" permittivity accounts for the conductivity.

Note: If there is polarization loss (molecular or atomic friction), than ε will be complex in addition to ε_c .

Ampere's law becomes:

$$\nabla \times \underline{H} = \underline{J}^{i} + j \,\omega \,\varepsilon_{c} \,\underline{E}$$

Ampere's law thus becomes in the same form as for free space:

$$\nabla \times \underline{H} = \underline{J}^{i} + j \,\omega \,\varepsilon_{0} \,\underline{E}$$

Effective Permittivity (cont.)

Note: ε_c is often called ε for simplicity in most books.

However, be careful!

$$\underline{D} = \varepsilon \underline{E}$$
$$\underline{D} \neq \varepsilon_c \underline{E}$$

Even though the effective permittivity appears in Ampere's law, it is the actual permittivity that relates the flux density to the electric field.

Effective Permittivity Principle

This principle allows us to solve problems involving a homogeneous (lossy) material, as long as we know how to solve the corresponding free-space problems.

The formulas for the fields remains the same: we simply make this simple substitution.

Example

A dipole is embedded in an infinite medium of ocean water. What is the far-field of the dipole?

First examine problem in *free space* (next slide).

Example (cont.)

As
$$r \to \infty$$

$$E_{\theta} = \frac{j \,\omega \,\mu_0}{4 \,\pi \,r} \sin \theta \, e^{-j k_0 r}, \quad k_0 = \omega \sqrt{\mu_0 \varepsilon_0}$$

Example (cont.)

Dipole in ocean:

As $r \to \infty$

$$E_{\theta} = \frac{j \,\omega \,\mu_0}{4 \,\pi \,r} \sin \theta \, e^{-j k_1 r}, \quad k_1 = \omega \sqrt{\mu_0 \varepsilon_c} = k_1' - j k_1''$$

$$\varepsilon_c = \varepsilon - j \frac{\sigma}{\omega}$$
 $\varepsilon = \varepsilon_0 \varepsilon_r = \varepsilon_0 \left(\varepsilon_r' - j \varepsilon_r'' \right)$

Loss Tangent

$$\varepsilon_c = \varepsilon - j \frac{\sigma}{\omega}$$

Write this as:

$$\varepsilon_c = \varepsilon_c' - j\varepsilon_c''$$

The loss tangent is defined as:

$$\tan \delta \equiv \frac{\varepsilon_c''}{\varepsilon_c'}$$

Note: The loss tangent combines losses from atomic and molecular friction together with loss from conductivity.

 $\varepsilon_{c}^{\prime\prime} = \operatorname{Re}(\varepsilon)$ $\varepsilon_{c}^{\prime\prime} = -\operatorname{Im}(\varepsilon) + \frac{\sigma}{\omega}$

Note: In most books, the symbol ε is used to denote ε_c in the time-harmonic steady state.

Some Common Materials

f = 3 GHz

Material	$tan\delta$
Water (pure)	0.156
FR4	0.018
Duroid board (typical)	0.001
Polyethelene	0.00031
Teflon	0.00014
Quartz	0.000061
Sapphire	0.00002

Polarization Current

Four types of current density (nonmagnetic medium)

Note: The freespace displacement current is not an actual current flow.

Model of polarization current:

 $\mathscr{P}_{x} = (qx)N_{d}$

 $\Rightarrow \frac{d\mathscr{P}_x}{dt} = \left(N_d q\right) \frac{dx}{dt} = \left(N_d q\right) v$

N_d dipoles per unit volume

The dipoles stretch rather than rotate.

As the electric field changes, we imagine that the position x of the positive charge changes, with the negative charge being stationary.

From the charge-current equation:

$$\mathcal{J}_x^p = \rho_v^q v = (qN_d)v$$

Hence
$$\mathcal{J}_x^p = \frac{d\mathscr{P}_x}{dt}$$

In general,

$$\underline{\mathscr{J}}^{p} = \frac{d\underline{\mathscr{P}}}{dt}$$

Time-harmonic steady state:

$$\underline{J}^{p} = j\omega\underline{P} = j\omega\varepsilon_{0}\chi_{e}\underline{E} = j\omega\varepsilon_{0}(\varepsilon_{r}-1)\underline{E} = j\omega(\varepsilon-\varepsilon_{0})\underline{E}$$

$$\underline{J}^{p} = j\omega(\varepsilon - \varepsilon_{0})\underline{E}$$

This agrees with the conclusion from Amperes' law.

If magnetic material is present:

$$\mathcal{H} \equiv \frac{1}{\mu_0} \underline{\mathcal{B}} - \underline{\mathcal{M}} \qquad \Longrightarrow \qquad H = \frac{1}{\mu_0} \underline{B} - \underline{M}$$

$$\nabla \times \left(\frac{1}{\mu_0} \underline{B} - \underline{M}\right) = \underline{J}^i + j \, \omega \, \varepsilon_c \, \underline{E}$$

$$\stackrel{\text{LHS is that of Ampere's}}{\downarrow} \qquad = \underline{J}^i + \sigma \, \underline{E} + j \, \omega \, \varepsilon_0 \, \underline{E} + j \, \omega \, \varepsilon_0 \, \underline{E} + j \, \omega \, (\varepsilon - \varepsilon_0) \, \underline{E}$$

$$\nabla \times \left(\frac{1}{\mu_0} \underline{B}\right) = \underline{J}^i + \sigma \, \underline{E} + j \, \omega \, \varepsilon_0 \, \underline{E} + j \, \omega \, (\varepsilon - \varepsilon_0) \, \underline{E} + \nabla \times \underline{M}$$
Polarization current from
Polarization current from

dielectric properties

magnetic properties

Equivalent Current

Inside the body,

$$\nabla \times \underline{H} = j \,\omega \,\varepsilon_c \,\underline{E}$$
$$= j \,\omega \,\varepsilon_0 \,\underline{E} + j \,\omega \left(\varepsilon_c - \varepsilon_0\right) \underline{E}$$

Define:

$$\underline{J}^{eq} \equiv j\,\omega\big(\varepsilon_c - \varepsilon_0\big)\underline{E}$$

Equivalent Current (cont.)

$$\nabla \times \underline{H} = j \,\omega \,\varepsilon_0 \,\underline{E} + \underline{J}^{eq}$$

Note: The equivalent current is unknown, since the electric field inside the body is unknown.

Equivalent Current (cont.)

The equivalent current combines the conduction current and the polarization current. σ

$$\mathcal{E}_{c} = \mathcal{E} - j\frac{\sigma}{\omega}$$
$$\underbrace{J^{eq}}_{=} = j\omega(\mathcal{E}_{c} - \mathcal{E}_{0})\underline{E}_{=}$$
$$= j\omega(\mathcal{E} - \mathcal{E}_{0})\underline{E} + \sigma\underline{E}_{=}$$

SO

