ECE 6340 Intermediate EM Waves

Fall 2016

Prof. David R. Jackson
Dept. of ECE

Notes 5

Magnetic Current

Maxwell's Equations:

$$
\begin{array}{ll}
\nabla \cdot \underline{\mathscr{D}}=\rho_{v} & \nabla \times \underline{\mathscr{H}}=\underline{\mathscr{J}}+\frac{\partial \underline{\mathscr{D}}}{\partial t} \\
\nabla \cdot \underline{\mathscr{B}}=\underset{\uparrow}{0} & \nabla \times \underline{\mathscr{E}}=\underline{0}-\frac{\partial \underline{\mathscr{B}}}{\partial t}
\end{array}
$$

Missing terms correspond to ρ_{v}^{m}, $\underline{\mathscr{l l}}$

Magnetic Current (cont.)

Define magnetic charge so that

$\nabla \cdot \underline{\mathscr{B}}=\rho_{v}^{m}$

(A positive magnetic charge corresponds to a north magnetic pole.)

Assume that a continuity equation holds:

$$
\nabla \cdot \underline{\mathscr{U}}=-\frac{\partial \rho_{v}^{m}}{\partial t}
$$

From this, we can show that $\underline{\mathscr{L}}$ belongs in Faraday's Law as:

$$
\nabla \times \underline{\mathscr{E}}=-\underline{\mathscr{H}}-\frac{\partial \underline{\mathscr{B}}}{\partial t}
$$

Magnetic Current (cont.)

Proof:

Take the divergence of both sides:

$$
\begin{gathered}
\nabla \cdot(\nabla \times \underline{\mathscr{E}})=-\nabla \cdot \underline{\mathscr{H}}-\frac{\partial}{\partial t}(\nabla \cdot \underline{\mathscr{B}}) \\
\text { so } \quad \nabla \cdot \underline{\mathscr{H}}=-\frac{\partial \rho_{v}^{m}}{\partial t}
\end{gathered}
$$

Magnetic Current

Maxwell's Equations:

$$
\begin{array}{ll}
\nabla \times \underline{\mathscr{H}}=\underline{\mathscr{J}}+\frac{\partial \underline{\mathscr{O}}}{\partial t} & \nabla \cdot \underline{\mathscr{D}}=\rho_{v} \\
\nabla \times \underline{\mathscr{E}}=-\underline{\mathscr{H}}-\frac{\partial \underline{\mathscr{R}}}{\partial t} & \nabla \cdot \underline{\mathscr{R}}=\rho_{v}^{m}
\end{array}
$$

Note: Maxwell's equations are now symmetric. If we know how an electric current radiates, it will be easy to figure out how a magnetic current radiates (this is called duality).

Magnetic Current (cont.)

Example: Radiation from a waveguide-fed aperture

Magnetic Current (cont.)

Usefulness of magnetic current concept: radiation from a waveguide

Waveguide with infinite baffle

Equivalence Principle (discussed later in the semester)

Magnetic Current (cont.)

We can now remove the ground plane:

Magnetic Current (cont.)

The radiation from the magnetic current is related to radiation from a corresponding electric current:

Duality
(discussed later in the semester)

Magnetic Current (cont.)

Summary of final radiation picture

Electric current
$\underline{J}_{s}=2\left(-\underline{\hat{n}} \times \underline{E}^{a p}\right)$

Radiation from electric current in free space (discussed later in the semester)

Magnetic Current (cont.)

3D view of original problem

Magnetic Current (cont.)

3D view of final radiation model

