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Work given to a collection of
electric charges moving in an é

electric field: This could be
' conduction current or

AW _ (Aq é) | Aﬁ impressed current. z _ ,OVM
=(p,ASAL &) AL
Note: The magnetic field never does any work: Al =VAt
Aq(yx£)-AL=0 — p, ALAS

Power dissipated per unit volume:

I
X
|5

AW _( AL

S = =€ = ¥4
S Tasarat P At]_ (pyy)-€

Note: We assume no increase in kinetic energy, so the power goes to heat.



Power dissipated per unit volume for ohmic current (we assume here
a simple linear media that obeys Ohm’s law):

=g t=(06)-E=o(-£)=oléf = ot

Hence, we have

P =cé’



Return to the general result:

This is the power dissipated per unit volume.

From this we can also write the power generated per unit volume due
to an impressed source current:

?=—Z-§

S



0%

VXC=—M—-——
ot
oY
Vx%: (_l__—
L=J* %
From these we obtain
ﬁ-(Vxé):—%-%— @
ot
E(Vx)= gt

Subtract, and use the following vector identity:

%-(Vxﬁ)—ﬁ-(Vxﬂ):V-(@@x%)



We then have

Now let gzji—kaéa

so that




Next, use Assume: Y =gl

0Y ( a(gj o .
¢ —=¢|-— (simple linear media)

oY oc¢ 1 0&°
Hence ¢-|—|=¢|¢-—|=¢|—
ot ot 2 ot

2
And similarly, %58_% _ ﬂ(l Y4 j

2 ot




Poynting Theorem: Time-Domain (cont.)

Define Zzéxﬂ

We then have

VS =g - - -%—g{ieéﬂ +3wf2}

— ot| 2 2

Next, integrate throughout V and use the divergence theorem:

Note: We are assuming the volume to be stationary (not moving) here.



VAPALE ja@@Z dv——j(—g(g2

Interpretation:

1 &*dV = stored electric energy

—&
2

'lﬂgfz dV = stored magnetic energy

[ & ¢?dV = dissipated power

U
~N
I
>
A
|:>>

.(—ji &= M -éff)dv = source power

dS = power flowing out of S

(see next figure)

1
&
2#
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or

10



Poynting Theorem: Time-Domain (cont.)

I Power flow out
! of surface

— N e () =

source

/] \



S =EXMH

Does the Poynting vector really represent local power flow?

V-Z:—f-ﬁ—a@@z—/f-%—% %gé@%%wﬂ

Consider: z’ =Y +Vx.d

% = Arbitrary vector function

’ This “new Poynting vector” is equally

Note that V. Z =V Z valid! They both give same TOTAL
power flowing out of the volume, but

different local power flow.




Another “dilemma”:

A static point charge is sitting next to a bar magnet.

P =ExH %0
N o
Is there really power flowing in space?
Note: There certainly must be zero net power
out of any closed surface:
S

A=A %i/(%%)
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Bottom line: We always get the correct result if we assume
that the Poynting vector represents local power flow.

Because...

In a practical measurement, all we can ever really measure is
the power flowing through a closed surface.

Comment:

At high frequency, where the power flow can be visualized as "photons"
moving in space, it becomes more plausible to think of local power flow. In
such situations, the Poynting vector has always given the correct result that
agrees with measurements.
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Frequency domain: VxE =-M ' J U H  Generalized linear media:
o o o & may be complex.

VxH=J'+jwes E 4

& =E—]—
)

Hence H™-(VxE)=-M'-H - ja),u|ﬂ|2

E(Vxﬂﬁ=§gfjﬁmigf

Subtract and use the following vector identity:
V-(AxB)=B-(VxA)-A(VxB)

= V-(ExH')=H"-(VxE)-E:(VxH')

E

H -E-3" - joulH[ +jos |Ef
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*

1
Define S = EE XxH  (complex Poynting vector)

Note: Re§:%Re(ExH*)=<§Xﬂ>=<Z>

Then
1
V-s=—Z(E-J
2

Next use
I AN *_r_l_'n
E. =& — ). — &.=&,.1]&,

— gy — 01" Next, collect real and imaginary
H=H J H parts in the last term on the RHS.
16



1 [ i ' ' 1 r 7
V-s=——(E-3"+M" H')+~ jo(|Ef ~u|H[ )2 o |Ef + u'[H[)
or
1 i i * 1 ' 1 ' 1 " r
V:s=-Z(E3"+M"H )+21w(zec Ef - u ﬂ|2)——60(8c Ef +u'|H[)
Next, integrate over a volume V and apply the divergence theorem:
A 1 i | 1 -2 1 . p
ps-ds=]-Z(E-2"+M"H )dV+ZJw\_/[(—5c Ef -Z#H jdv
—_[ (i we!|E g 1a)y” ﬂmdv
s\ 2 2
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Complex Poynting Theorem (cont.)

Final form of complex Poynting theorem:




Interpretation of P.:

i
(g )+t 2o = ()

m'U

( E.-J" +Mi-H*)dV

I\Jll—\

ReP, =

\Y

—

We therefore identify that
P, = complex source power |VA]

Re P, =real power (watts) from the sources [W]

Im P, =imaginary power (vars) from the sources [ VAR |
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Interpretation of P :

We therefore identify that

P. = complex power flowing out of S

Re P, =real power (watts)flowing out of S [W]
Im P, =imaginary power (vars)flowing out of S [VAR]
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Interpretation of energy terms:

1 ,. -2 1 ,(1 «
ch E| P E(EE)
igc lRe(g E)
—Sel(ed)=(Zele
2
1, 1,
Hence \J/-ZEC|E2dV: JEEC
. 1 ,,.2 1
Similarly, Vzlu ﬂ| dVv = \!Eu

Note: The real-part operator may be
added here since it has no effect.

Note: We know this result represents
stored energy for simple linear media
(g = &), so we assume it is true for
generalized linear media.

2
& | dVv )= <%e > Note:
o The formulas for
stored energy can
be improved for
2 dispersive media
%| dVv )= <%m> (discussed later).
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Interpretation of dissipation terms:

1
— e
2

r
C

(5
E.=&6— ]| —
)

g isreal for simple linear media

Ef —ost{ 3(E-E") |- ost{ 3Re(EE))

Recall: = a)‘9”<éa ' (go> = <a)5"

o
For simple linear media: @&, =@| — |=0
@

1 2 2
—we!'lElTdV = ENYdV = (#°
szgc E| j<a‘_‘ > < / >

\Y

Note:

This formula gives the correct
time-average power dissipated
due to electric losses for simple

linear media.

We assume the same
interpretation holds for
generalized linear media
(e is complex).
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Interpretation of dissipation terms (cont.):

Similarly,

[Gonlnf v =()

Vv

This is the time-average power dissipated due to magnetic losses.

Note: There is no magnetic conductivity, and hence
no magnetic conduction loss, but there can be
magnetic polarization loss.

23



Complex Poynting Theorem (cont.)

Summary of Final Form

24



Complex Poynting Theorem (cont.)

We can write this as -

where we have defined a complex power absorbed P
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P — P P This is a conservation
= Ty
S ans statement for complex power.

Re(Pus) = (%) Im(Py) =(20)((2%,)={2%))
Watts VARS
I Pf Complex power
\ - / flow out of surface
VARS consumed
E Power (watts)
a— \/ ’ consumed ( I) —_—

oo
rce
E M1 Sourc

-

/)
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L

W

+ V- Ideal (lossless) inductor

Denote:

PbS = complex power absorbed :Wabs +]Q

a abs

Calculate P, using circuit theory, and verify that the result is
consistent with the complex Poynting theorem.

Note: W, . =0 (lossless element)
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O

Ideal inductor

Note:
I:)abs — JQabs

(lossless element)
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Qabs — Im I:)abs Z%COL“ ’

:a)L(Re(%I I*jj
oL ((¥)) 20 (317

L
=20((%,))




Since there is no stored electric energy in the inductor, we can write

Quis =20({2%,)= (1))

Hence, the circuit-theory result is consistent with
the complex Poynting theorem.

Note: The inductor absorbs positive VARS.

30



We use the complex
Poynting theorem to
examine the input
Impedance of an antenna.

- - o

5_ -~
0
—_—

mc_'
_/
_/
_//,’/

_J

<
(e»]
D ( N\

- ,’/S
Antenna
i | «
P ==V, l. =—(Z_1)I
in 2 0 "In 2( in m) in
_izin||in|2
2
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_ in : —
so Z. = P Realpart: R = ;
‘ in‘ ‘ in‘
Re( P ) — <‘%1 >
o0 . .
— <Q??ad > (no losses in vacuum surrounding antenna)
o Note:
— Re Prad The far-field Poynting vector is much easier to
calculate than the near-field Poynting vector.

Hence R._ =

pRe(s-A)ds
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Example (cont.)

—pdRe(s D)

.n\

In the far field (r —o)

— (This follows from plane-wave
ImS = Q properties in the far field.)

Hence
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Imaginary part: X. = |2

|
S
—~~
o
S~

where

—_————
- -

Hence

0

<j> ms-Ads
Se

in

0 (

The RHS is zero!

i
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Example (cont.)

We can say that

X =2 = (20[(2%)-(2)])

Hence

However, it would be very difficult to calculate the input impedance
using this formulal!
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The permittivity and permeability are now functions of frequency:

E=¢& (a)) (A lossy dispersive media is assumed here. It is
assumed that the fields are defined over a fairly
H=H (a)) narrow band of frequencies.)

4
<%e> — Z‘E 5 (0)5 ) Note:
@ The stored energy should always
1 > O be positive, even if the
<%n> = —‘ |j —(a),u') permittivity or permeability
4 4 become negative.

Reference:

J. D. Jackson, Classical Electrodynamics, Wiley, 1998 (p. 263).
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The electromagnetic field has a momentum density
(momentum per volume):

f=9DxXP

In free space:

Reference:

J. D. Jackson, Classical Electrodynamics, Wiley, 1998 (p. 262).
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Photon:
From physics, we have a relation between the energy E and the
momentum p of a single photon.

E=pcC E=hf nh=6.626068x10" [Js]

(Planck’s constant)

Photons moving:
Al =CAt
Energy _ E(A(CAY)N, ‘ =

g =
* AAt AAt A (‘ - ‘@.;V
© O 0 O
=ECN,

= pc?N, =(pN,)c? Lt

Np photons per unit volume
_ 2
= /4C

Calculation of power flow:

Hence ﬁ e This is consistent with the
Z C2 z previous momentum formula.
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Example:
Find the time-average force on a 1 [m?] mirror illuminated by
normally incident sunlight, having a power density of 1 [kW/m?],

Note: the fields vary > 5
sinusoidally, but the A=1m — Z

frequency is arbitrary.

()= C%<%‘“°> = Ci (1000)
< 2(%”62( 2. 2((4"))(Ac) = ZE (1000)}[(1)@ - @

(%) =6.671x10"[N]
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Sunjammer Project

NASA has awarded $20 million to L'Garde, Inc. (Tustin, CA), a maker of “inflatable space structures,” to
develop a solar sail, which will rely on the pressure of sunlight to move through space when it takes its
first flight as soon as 2014.

A smaller version of L'Garde's solar sail unfurled in a vacuum chamber in Ohio in 2005. This one was about 3,400 square
feet, a quarter the size of the sail the company plans to loft into space as soon as 2014. Photo courtesy NASA and L'Garde.

http://www.lgarde.com
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http://sciencedude.ocregister.com/2011/08/31/tustin-firm-to-launch-huge-space-sail/136827/solarsailsmall580/

Solar Sail (cont.

A small Tustin aerospace company called L'Garde Inc. won a $20 million . . L The sail's
cantract from NASA to develop an enormous solar sail that they hope &2 diagonal is 164
to launch as soon as 2014, The sail, covering nearly 1/3 of an acre it ft: the shuttle is
and wider than the space shuttle is tall, would rely on the s 183 ft: the
pressure of sunlight to push it through the solar system — no A orbiter without
rocket fuel needed J v £ s tanks is 121 1.

i) A rocket, possibly a €3 Doors of €@ Nitrogen gas fills @ Once the nearly 1/3-acre sail is

" SpaceX Falcon 9, " dishwasher-sized  sail's control vanes unfurled, the gas is vented and a
launches the spacecraft open resin hardens the booms into place
inflatable solar sail
into space

BOOM

Made of
Mylar, Keviar
and Kapton

CONTROL

VANE KAPTON, a yellow plastic film, will be ®

coated with metal to create a reflective
surface. Sail is thinner than a human hair.

Sun emits Photons hit sail, Pressure of photons is
steady stream giving it equivalent to the welght of
of photons continuous push half of a dime. Solar sail
accelerates to
as much as 67,700 mph as it
orbits the sun.

L7

http://www.lgarde.com
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http://sciencedude.ocregister.com/2011/08/31/tustin-firm-to-launch-huge-space-sail/136827/solarsail-2/

This gives us the stress (vector force per unit area) on an object,
from knowledge of the fields on the surface of the object.

References:

D. J. Griffiths, Introduction to Electrodynamics, Prentice-Hall, 1989.

J. D. Jackson, Classical Electrodynamics, Wiley, 1998.

J. Schwinger, L. L. DeRaad, Jr., K. A. Milton, and W.-Y. Tsali, Classical
Electrodynamics, Perseus, 1998.
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Maxwell Stress Tensor

yX yy yz

1
I
—
_l
_l

X zy 2z

_ i’j:X,y’Z

(for vacuum)

1 1=
O. = {O, . JJ (Kronecker delta)



Momentum equation:

T-AdS= J+—jﬁdV

A

Total force on object (rate

Total flow rate of change of mechanical Rate of change of
of momentum momentum) electromagnetic
given to object momentum inside of region
from EM field \
\ J

44



. . d
gsﬁlg %+EVMW

In many practical cases the time-average of the last term (the rate of
change of electromagnetic momentum inside of region) is zero:

= No fields inside the body Example:
= Sinusoidal steady-state fields j't (sin’ (at)) = 2wsin (o) cos(at) = sin (20t)

<%(sin2 (wt))> = o(sin(2at))=0

:<£5< >ndS

The Maxwell stress tensor (matrix) is then interpreted as the stress
(vector force per unit area) on the surface of the body.

In this case we have

45



Example:
Find the time-average force on a 1 m? mirror illuminated by
normally incident sunlight, having a power density of 1 [kW/m?].

e N X
n=-2
TEM, wave — | T
“ ol A=1 m? > 7
TS Note:
~ ~ The fields are assumed to be zero
Y =7 Y on the back side of the mirror, and
Z - no fields are inside the mirror.
Txx Xy sz 0 _sz
O~ p— . A o . o —_
S = l n Tyx Tyy Tyz 0 Tyz
| ' zy v __1_ B _Tzz ]
U — —
‘/Ii o Tzz
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ﬁ=—2 I

TEM, wave ) ] A=1m? > 7

1 1
Tzz = & (5%2/-'_ Hy %%— (Ego |£|2 +E:u0 |(y_f|2j

1 1
= _(Ego |§|2 "‘E:Uo |<7_f|2j

front side

Assume: &=¢

|><>
5
X
| <>

@@Xinc /gfyinc _ 770

47



1 1
F=|=ed’+=uH"°
Z (2 %/ 21”0 ’ jfrontside

(PEC mirror)

We then have:

1 2

<'%>:qu0 Hy‘
1 inc
:ZIUO 2Hy 2

(The tangential magnetic field
doubles at the shorting plate.)

48



(=Sl i
Next, use
(1) = (o) = S EHE =Sl
| (EX*/HJ" =m,)
<'O}é> =t |Hy" 2
= U, (2<S;nc>/770)

=47 x107(2(1000) / 376.7303)

SO

(% )=6.671x10"°[N]
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Here we calculate the electrostatic force on a
dielectric object in an electric field using dipole moments.

This is an alternative to using the Maxwell stress tensor.

Consider first the force on a single electrostatic dipole:

For small dipoles:
F~q(Ar-VE(r,))

or
F~p-VE(r,)

Note that we have a gradient of a vector here. This is called a “dyad.”
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Dyadic representation:

VE :XQ(XE +JE, +2EZ)+2%(XEX +JE, +2EZ)+2£(XE + JE, +2EZ)

- OX
or
.+ OE, ~.OE,  _ OF, ..O0E,  ..0E, __0E ) (..O0E ..OE
VE =| XX TXY—+XZ T YyX TYY—+YyzZ 1 ZX TLZY——+
OX = OX OX =T oy oy ~ oy 0z = oz

Hence we have:

Ar -VE =(XAX+¥AY+2AZ)-VE =

oE oE oE
Ax(x‘fuy 13 E jwy(xaEw y+zaEzJ+Az(xaEX+9
: g



For a dielectric object:

F=[P(r)-VE(r)dv

Since the body does not exert a force on itself, we can use the external electric field E,,.

F=[P(r)-VE,(r)dv
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Force on Dielectric Object (cont.)

We then have:

We can also write;

or

or

53



——— % —_— —_— i m—
‘:::'“'—-ﬁbﬁhﬁ—a_,_ :}—__“———__x >
T T . e

-

. --\_\_\-
+. Dielectric =
object

A non-uniform electrical field will generate a net attractive force on a
neutral piece of matter. The force is directed toward the region of
higher field strength.

http://electrogravityphysics.com/html/sec_4.html


http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwiZjqegs_3OAhVU0WMKHZ3GB_AQjRwIBw&url=http://electrogravityphysics.com/html/sec_4.html&psig=AFQjCNGaIQuyMzm2VVYeODqnLJpsOAhkEQ&ust=1473342648446729

Force on Magnetic Object

We have (derivation omitted) the magnetostatic force as:

F=[M(r) VB, (r)av

Recal: M=y H

Hence, we have

or

or

55



Consider a lossless system with a port that leads into it:

Lossless system
(source free)

_ _ !/
E,=E=E

p=u

PEC enclosure

R. E. Collin, Field Theory of Guided Waves, IEEE Press, Piscataway, NJ, 1991.

Zin — jxin
<ﬁZ:ZI:Z:::::::@ Sp
Coaxial port
- > 7
dX.
Foster’s theorem: n >0
dw

56



The same holds for the input susceptance:

dBin
dw

>0
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Start with the following vector identity:

V-(AxB)=B(VxA)-A(VxB)

Hence we have (applying twice, for two different choices of the (vectors)

V. (gxa;a')] (aal_al)j (VxE)-E- [VX‘?@Z}
v[f;)xHJ H. (W@;] @ij(w)

Add these last two equations together:
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V- Exaﬂ +aE xH |= 8H (VXE) E- an
ow Ow 8@ 0w

*

J

+H - [ini)j—[i—%:)-(Vxﬂ)

Using Maxwell's equations for a source-free region,

V. Exﬁﬂ +aE xH |= @A -(—ja),uﬂ)—g- V x
ow Ow ow

oH

0w

[ )i

}
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V. Exaﬂ +aE xH | = ﬂ .(_ja),uﬂ)—g- anﬂ
ow Ow 0w 0w
+H - vxE || & (joweE)
0w ow

Using Maxwell's equations again, and the chain rule, we have:

oH 0 s 0, . .0 . . OFE

V — = V H = — E = — | — E — _—
) ow 8(0( X_) 8(0(](08_) J@a)(a)g)_ Joe ow
0E 0 ] o .. « .0 . . OH
Vx——=—(VxE) =—— H) =]— H -
* 0w 80)( X_) 8a)(Jw'u_) J@a)(w'u)_ " len ow

We then have
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Simplifying, we have

V. E><6ﬂ +aE x H
— Ow JOow

or
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v.[gx%ﬂw* #2%) xﬂ]= jK%(w‘Q)EZ}(%(Wﬂ)IﬂZﬂ

Applying the divergence theorem,

§ L2 | pos = )+ ()

. ow Ow
Hypothesis: the total stored energy must be positive.

Therefore,

Imcﬁ Exaﬂ +aE xH |-ndS >0
. ow Ow
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Im<j> Exﬁﬂ +aE xH |-ndS>0
. ow Ow

The tangential electric field is only nonzero at the port. Hence we have:

*

Im_[ Exaﬂ +aE xH [-ndS >0
S, do Jw

Assume that the electric field (voltage) at the port is fixed (not changing
with frequency).

Then we have
Zin = jxin
) Lossless system
_a E (source free) R S
— = O N p
0w £ =6=¢ Coaxial port
p=u L
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Then ImI(Ex 8_ ]-ﬁds >0

At the coaxial port: Z, = iX,
Lossless system
— A (source free) (@ S
E= P Ep , p
R E.=&=¢ Coaxial port
H=¢H ’ p=u — Z
Hence

oH *
|mj E —¢ |dS >0
" Ow

0

" (since the electric field is
of £ Im j (EpH¢ )dS >0 fixed and not changing
Sp with frequency)
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0

==> —Im(2P,)>0

0w

= ﬁlm[Vlj}o

0w

0

0w

m [(E,H, )ds >0

Sp
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Foster's Theorem (cont.)

—Im|Y, |<0

0
—1ImlY. 0
—> Py, m[ In]>

0w

=

66



Example: short-circuited transmission line

A
v

P =aw\LC Inductive

2 3rl2 57/2 ol

T

-~

Capacitive
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