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Power Dissipated by Current 
Work given to a collection of 
electric charges moving in an 
electric field:   

( )
( )v

W q

Sρ

∆ = ∆ ⋅∆

= ∆ ∆ ⋅∆



 

E

E

( )d v v
W v

S t t
ρ ρ

 ∆ ∆
= = ⋅ = ⋅ = ⋅ ∆ ∆ ∆ ∆ 





P E E J E

Power dissipated per unit volume:   

v vρ=J

vq Sρ∆ = ∆ ∆

E

∆ = ∆ v t

∆S
vρ

Note: We assume no increase in kinetic energy, so the power goes to heat. 
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Note: The magnetic field never does any work: 

( ) 0q v∆ × ⋅∆ =B

This could be 
conduction current or 
impressed current. 



( ) ( ) 2 2c
d σ σ σ σ= ⋅ = ⋅ = ⋅ = =P J E E E E E E E

Power dissipated per unit volume for ohmic current (we assume here 
a  simple linear media that obeys Ohm’s law):   

Power Dissipated by Current (cont.) 

22 ≡ = ⋅E E E ENote: 
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2
d σ=P E

Hence, we have 



Power Dissipated by Current (cont.) 

From this we can also write the power generated per unit volume due 
to an impressed source current: 

i
s = − ⋅P J E
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d = ⋅P J E

Return to the general result: 

This is the power dissipated per unit volume. 



Poynting Theorem: Time-Domain 

t

t

∂
∇× = − −

∂
∂

∇× = +
∂

B
E M

D
H J

From these we obtain  

( )

( )

∂
⋅ ∇× = − ⋅ − ⋅

∂
∂

⋅ ∇× = ⋅ + ⋅
∂

t

t

B
H E M H H

D
E H J E E

Subtract, and use the following vector identity: 

( ) ( ) ( )⋅ ∇× − ⋅ ∇× = ∇⋅ ×H E E H E H
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We then have  

( ) ∂ ∂
∇ ⋅ × = − ⋅ − ⋅ − ⋅ − ⋅

∂ ∂t t
B D

E H M H J E H E

( ) 2σ ∂ ∂
∇ ⋅ × = − ⋅ − − ⋅ − ⋅ − ⋅

∂ ∂
i i

t t
D B

E H J E E M H E H

i

i

σ= +

=

J J E

M M

Now let 

so that 

Poynting Theorem: Time-Domain (cont.) 
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Next, use 

and 

ε∂ ∂ ⋅ = ⋅ ∂ ∂ t t
D E

E E

( )
2

2∂ ∂ ∂ = ⋅ = ⋅ ∂ ∂ ∂ t t t
E E

E E E

21
2t t t

ε ε
 ∂ ∂ ∂   ⋅ = ⋅ =     ∂ ∂ ∂     

D E E
E EHence 

And similarly, 
21

2
µ
 ∂ ∂

⋅ =  ∂ ∂ t t
B H

H

Poynting Theorem: Time-Domain (cont.) 

(simple linear media) 
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ε=D EAssume: 



Define ≡ ×S E H

2 2 21 1
2 2

σ ε µ∂  ∇ ⋅ = − ⋅ − − ⋅ − + ∂  
i i

t
S J E E M H E H

Next, integrate throughout V and use the divergence theorem: 

We then have 

( ) 2 2 21 1ˆ
2 2

i i

S V V V

n dS dV dV dV
t

σ ε µ∂  ⋅ = − ⋅ − ⋅ − − + ∂  ∫ ∫ ∫ ∫

S J E M H E E H

Poynting Theorem: Time-Domain (cont.) 

Note: We are assuming the volume to be stationary (not moving) here. 
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Interpretation: 

( )

2

2

2

1
2
1
2

ˆ

e
V

m
V

d
V

i i
s

V

f
S

dV

dV

dV

dV

n dS S

ε

µ

σ

= =

= =

= =

= − ⋅ − ⋅ =

⇒ = ⋅ =

∫

∫

∫

∫

∫

stored electric energy

stored magnetic energy

dissip

power flowing out of  

ated power

source power 

W E

W H

P E

P J E M H

P S

Poynting Theorem: Time-Domain (cont.) 
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( ) 2 2 21 1ˆ
2 2

i i

S V V V

n dS dV dV dV
t

σ ε µ∂  ⋅ = − ⋅ − ⋅ − − + ∂  ∫ ∫ ∫ ∫

S J E M H E E H

(see next figure) 



( )∂
= − − +

∂f s d e mt
P P P W W

or 

( )∂
= + + +

∂s d f e mt
P P P W W

Poynting Theorem: Time-Domain (cont.) 
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( ) 2 2 21 1ˆ
2 2

i i

S V V V

n dS dV dV dV
t

σ ε µ∂  ⋅ = − ⋅ − ⋅ − − + ∂  ∫ ∫ ∫ ∫

S J E M H E E H



( )∂
= + + +

∂s d f e mt
P P P W W

Poynting Theorem: Time-Domain (cont.) 

ε, µ, σ 

source 

Power flow out 
of surface 

E 

H 
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Poynting Theorem: Note on Interpretation 

= ×S E H

2 2 21 1
2 2

σ ε µ∂  ∇ ⋅ = − ⋅ − − ⋅ − + ∂  
i i

t
S J E E M H E H

Does the Poynting vector really represent local power flow? 

Consider: ′ = +∇×S S A

Arbitrary vector function=A

′∇ ⋅ = ∇ ⋅S S
This “new Poynting vector” is equally 
valid! They both give same TOTAL 

power flowing out of the volume, but 
different local power flow. 

Note that 
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Note on Interpretation (cont.) 

0= × ≠S E H

Another “dilemma”: 

N 

S 

q 

A static point charge is sitting next to a bar magnet. 

Is there really power flowing in space? 

Note: There certainly must be zero net power 
out of any closed surface: 

( )∂
= + + +

∂s d f e mt
P P P W W
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Note on Interpretation (cont.) 

Bottom line: We always get the correct result if we assume 
that the Poynting vector represents local power flow.  

Because… 
 

In a practical measurement, all we can ever really measure is 
the power flowing through a closed surface. 

Comment: 
 

At high frequency, where the power flow can be visualized as "photons" 
moving in space, it becomes more plausible to think of local power flow. In 
such situations, the Poynting vector has always given the correct result that 
agrees with measurements.  
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Complex Poynting Theorem 

Hence 

i

i
c

E M j H

H J j E

ω µ

ω ε

∇× = − −

∇× = +

( )
( )

2**

2* * *

i

i
c

H E M H j H

E H E J j E

ω µ

ω ε

⋅ ∇× = − ⋅ −

⋅ ∇× = ⋅ −

( ) 2 2* * * *i i
cE H M H E J j H j Eω µ ωε∇⋅ × = − ⋅ − ⋅ − +

( ) ( ) ( )* * *E H H E E H∇ ⋅ × = ⋅ ∇× − ⋅ ∇×

Subtract and use the following vector identity: 

Hence 

( ) ( ) ( )A B B A A B∇⋅ × = ⋅ ∇× − ⋅ ∇×

Generalized linear media:  
ε  may be complex. 
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Frequency domain: 

c jσε ε
ω

= −



Define 

Next use 

*1
2

= ×S E H

( )*1Re Re
2

S E H= × = × =E H S

( ) ( )2 2* * *1 1
2 2

ω ε µ∇⋅ = − ⋅ + ⋅ + −i i
cS E J M H j E H

*
c c c c c cj j

j
ε ε ε ε ε ε
µ µ µ

′ ′′ ′ ′′= − → = +
′ ′′= −

(complex Poynting vector) 

Note: 

Then 

Complex Poynting Theorem (cont.) 
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Next, collect real and imaginary 
parts in the last term on the RHS. 



or 

( ) ( ) ( )2 2 2 2* *1 1 1
2 2 2

i i
c cS E J M H j E H E Hω ε µ ω ε µ′ ′ ′′ ′′∇ ⋅ = − ⋅ + ⋅ + − − +

( ) ( )2 2 2 2* *1 1 1 12
2 4 4 2

i i
c cS E J M H j E H E Hω ε µ ω ε µ ′ ′ ′′ ′′∇ ⋅ = − ⋅ + ⋅ + − − + 

 

( ) 2 2* *

2 2

1 1 1ˆ 2
2 4 4

1 1
2 2

i i
c

S V V

c
V

S n dS E J M H dV j E H dV

E H dV

ω ε µ

ωε ωµ

 ′ ′⋅ = − ⋅ + ⋅ + − 
 

 ′′ ′′− + 
 

∫ ∫ ∫

∫



Complex Poynting Theorem (cont.) 

Next, integrate over a volume V and apply the divergence theorem: 
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( )* *

2 2

2 2

1 ˆ
2

1 12
4 4

1 1
2 2

i i

V S

c
V

c
V

E J M H dV S n dS

j H E dV

E H dV

ω µ ε

ωε ωµ

− ⋅ + ⋅ = ⋅

 ′ ′+ − 
 

 ′′ ′′+ + 
 

∫ ∫

∫

∫



Complex Poynting Theorem (cont.) 

Final form of complex Poynting theorem: 
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Interpretation of Ps : 

( )* *1
2

i i
s

V

P E J M H dV= − ⋅ + ⋅∫

( )Re i i
s s

V

P dV= − ⋅ + − ⋅ =∫ E J M H P

[ ]VAsP ≡ complex source power

Complex Poynting Theorem (cont.) 
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We therefore identify that 

[ ]
[ ]

Re W

Im VAR
s

s

P

P

≡

≡

real power (watts) from the sources

imaginary power (vars) from the sources



Interpretation of Pf : 

( )*1 ˆ
2f

S

P E H n dS= × ⋅∫

( ) ˆRe f f
S

P n dS= × ⋅ =∫ E H P

fP S≡ complex power flowing out of

Complex Poynting Theorem (cont.) 

20 

We therefore identify that 

[ ]
[ ]

Re W

Im VAR
f

f

SP

P S

≡

≡

real power (watts) flowing out of

imaginary power (vars) flowing out of



( )

( )

2 *

*

2

1 1 1
4 2 2

1 1 Re
2 2

1 1
2 2

c c

c

c c

E E E

E E

ε ε

ε

ε ε

 ′ ′= ⋅ 
 
 ′ ⋅ 
 

′ ′= ⋅ =E E E

2 2

2 2

1 1
4 2

1 1
4 2

c c e
V V

m
V V

E dV dV

H dV dV

ε ε

µ µ

′ ′= =

′ ′= =

∫ ∫

∫ ∫

E W

H W

Hence 

Complex Poynting Theorem (cont.) 

Interpretation of energy terms: 

Note: The real-part operator may be 
added here since it has no effect. 

Similarly, 

21 

Note: We know this result represents 
stored energy for simple linear media 
(εc′ = ε), so we assume it is true for 

generalized linear media. 

Note: 
The formulas for 

stored energy can 
be improved for 
dispersive media 
(discussed later). 



( ) ( )2 * *

2

1 1 1 Re
2 2 2c c c

c c

E E E E Eωε ωε ωε

ωε ωε

   ′′ ′′ ′′= ⋅ = ⋅   
   

′′ ′′= ⋅ =E E E

Hence 

Complex Poynting Theorem (cont.) 

Interpretation of dissipation terms: 

c
σωε ω σ
ω
 ′′= = 
 

2 21
2

e
c d

V V

E dV dVωε σ′′ = =∫ ∫ E P

For simple linear media: 
Note:  

This formula gives the correct 
time-average power dissipated 
due to electric losses for simple 

linear media. 
 

We assume the same 
interpretation holds for 

generalized linear media 
(ε  is complex). 

22 

c j σε ε
ω

ε

 = −  
 

is real for simple linear media 

Recall: 



21
2

m
d

V

H dVωµ′′ =∫ P

Complex Poynting Theorem (cont.) 

Interpretation of dissipation terms (cont.): 

Similarly, 

This is the time-average power dissipated due to magnetic losses. 

23 

Note: There is no magnetic conductivity, and hence 
no magnetic conduction loss, but there can be 

magnetic polarization loss. 



Complex Poynting Theorem (cont.) 

( )( )2s f d m eP P j ω= + + −P W W

( )* *

2 2

2 2

1 ˆ
2

1 1
2 2

1 12
4 4

i i

V S

c
V

c
V

E J M H dV S n dS

E H dV

j H E dV

ωε ωµ

ω µ ε

− ⋅ + ⋅ = ⋅

 ′′ ′′+ + 
 

 ′ ′+ − 
 

∫ ∫

∫

∫



Summary of Final Form 
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Complex Poynting Theorem (cont.) 

( )( )2s f d m eP P j ω= + + −P W W

( )Re abs dP = P

( ) ( )( )Im 2abs m eP ω= −W W

s f absP P P= +We can write this as 

where we have defined a complex power absorbed Pabs : 

absP

25 



Complex Poynting Theorem (cont.) 

( )Re abs dP = P ( ) ( )( )Im 2abs m eP ω= −W W

s f absP P P= +

Source 

Complex power 
flow out of surface 

E 

H 

VARS consumed 
Power (watts) 
consumed 

,cε µ′′ ′′

Watts VARs 

fP

26 

This is a conservation 
statement for complex power. 



Example 

complex power absorbed= = +abs abs absP W jQ
Denote: 

Calculate Pabs using circuit theory, and verify that the result is 
consistent with the complex Poynting theorem. 

Note:  Wabs = 0 (lossless element) 

I 
+    V   - Ideal  (lossless) inductor 

L 

27 



Example (cont.) 

( )

( )

* *

*

2

1 1
2 2

1
2
1
2

absP V I Z I I

j L I I

j L I

ω

ω

= =

=

=

28 

I 
+    V   - Ideal inductor 

L 

abs absP jQ=
Note: 

(lossless element) 



Example (cont.) 

( )
( )

2

*

2 2

1Im
2
1Re
2

12
2

2

abs abs

m

Q P L I

L I I

L i L i

ω

ω

ω ω

ω

= =

  =     
 

= =  
 

= W
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Example (cont.) 

Since there is no stored electric energy in the inductor, we can write  

( )2ω= −abs m eQ W W

Note: The inductor absorbs positive VARS. 

Hence, the circuit-theory result is consistent with 
the complex Poynting theorem. 
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Example 

Antenna 

Model: 

+ 
- V0 

Iin 

Zin=Rin+j Xin 
( )* *

0

2

1 1
2 2
1
2

= =

=

in in in in in

in in

P V I Z I I

Z I

31 

+ 
- 

Iin 

V0 

Js 

Pf 

S 

We use the complex 
Poynting theorem to 
examine the input 

impedance of an antenna. 



Example (cont.) 

so 
2

2 in
in

in

PZ
I

= Real part: 
( )

2

2Re in
in

in

P
R

I
=

( )Re

Re

in in

rad

rad

P

P

∞

∞

=

=

=

P

P

Hence ( )2
2 ˆRein

Sin

R S n dS
I

∞

= ⋅∫

(no losses in vacuum surrounding antenna) 

Note:  
The far-field Poynting vector is much easier to 
calculate than the near-field Poynting vector.  
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Example (cont.) 

Hence 

( )2
2 ˆRein

Sin

R S n dS
I

∞

= ⋅∫

(This follows from plane-wave 
properties in the far field.) Im 0S =

In the far field (r →∞) 

( )2
2 ˆin

Sin

R S n dS
I

∞

= ⋅∫

33 



Example (cont.) 

Imaginary part: ( )2
2 Imin in
in

X P
I

=

( ) ( )Im Im 2ω∞= +  −  in rad m eP P W W

,m eW W

2
2 ˆImin

Sin

X S n dS
I

∞

≠ ⋅∫

Hence 

where 

34 

The RHS is zero! 



Example (cont.) 

( )2
2 2in m e
in

X
I

ω= −  W W

2 2
0 02

4 1 1
4 4in

Vin

X H E dV
I
ω µ ε = − 

 ∫

Hence 

However, it would be very difficult to calculate the input impedance 
using this formula! 

35 

We can say that 



Dispersive Material 
The permittivity and permeability are now functions of frequency: 

( )
( )

ε ε ω

µ µ ω

=

=

The formulas for stored electric and magnetic energy now become: 

( )

( )

2

2

1
4
1
4

e

m

E

H

ωε
ω

ωµ
ω

∂ ′=
∂
∂ ′=
∂

W

W

J. D. Jackson, Classical Electrodynamics, Wiley, 1998 (p. 263). 

Reference: 

Note:  
The stored energy should always 

be positive, even if the 
permittivity or permeability 

become negative. 

(A  lossy dispersive media is assumed here. It is 
assumed that the fields are defined over a fairly 
narrow band of frequencies.) 
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Momentum Density Vector 
The electromagnetic field has a momentum density 
(momentum per volume): 

= ×p D B

In free space: 

( )0 0µ ε= ×p E H

2

1
c

=p Sor [(kg m/s)/m3] = [kg/(s m2)] 

37 

J. D. Jackson, Classical Electrodynamics, Wiley, 1998 (p. 262). 

Reference: 



Momentum Density Vector (cont.) 
Photon:  
From physics, we have a relation between the energy E and the 
momentum p of a single photon.  

E pc= E hf= 346.626068 10 [J s]h −= ×

( )( )

( )2 2

2

p
z

p

p p

z

E A c t NEnergy
A t A t

Ec N

pc N pN c

c

∆
= =

∆ ∆
=

= =

=

S

p

(Planck’s constant) 

2

1
z zc
=p S

Np photons per unit volume 

A 
v 

ˆz z=S S

c t∆ = ∆

Photons moving: Calculation of power flow: 

Hence This is consistent with the 
previous momentum formula. 
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Momentum Density Vector (cont.) 
Example:  
Find the time-average force on a 1 [m2] mirror illuminated by 
normally incident sunlight, having a power density of 1 [kW/m2]. 

2 2

1 1 (1000)inc
z zc c

= =incp S

( )( ) ( )( ) ( )2

2 1 20002 2 (1000) 1
inc

z inc
z z

Ac t
Ac c

t c c

∆  = = = =   ∆  

p
F p

66.671 10 [N]z
−= ×F

A = 1 m2 z 

39 

Note: the fields vary 
sinusoidally, but the 

frequency is arbitrary. 



Solar Sail 

40 

NASA has awarded $20 million to L’Garde, Inc. (Tustin, CA), a maker of “inflatable space structures,” to 
develop a solar sail, which will rely on the pressure of sunlight to move through space when it takes its 
first flight as soon as 2014. 

http://www.lgarde.com 

A smaller version of L'Garde's solar sail unfurled in a vacuum chamber in Ohio in 2005. This one was about 3,400 square 
feet, a quarter the size of the sail the company plans to loft into space as soon as 2014. Photo courtesy NASA and L'Garde. 

Sunjammer Project 

http://sciencedude.ocregister.com/2011/08/31/tustin-firm-to-launch-huge-space-sail/136827/solarsailsmall580/


Solar Sail (cont.) 

41 http://www.lgarde.com 

http://sciencedude.ocregister.com/2011/08/31/tustin-firm-to-launch-huge-space-sail/136827/solarsail-2/


Maxwell Stress Tensor 

This gives us the stress (vector force per unit area) on an object, 
from knowledge of the fields on the surface of the object. 

References: 

J. Schwinger, L. L. DeRaad, Jr., K. A. Milton, and W.-Y. Tsai, Classical 
Electrodynamics, Perseus, 1998. 

J. D. Jackson, Classical Electrodynamics, Wiley, 1998. 

D. J. Griffiths, Introduction to Electrodynamics, Prentice-Hall, 1989. 
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Maxwell Stress Tensor 

xx xy xz

yx yy yz

zx zy zz

T T T
T T T T

T T T

 
 =  
  

2 2
0 0 0 0

1 1
2 2ij i j i j ijT ε µ δ ε µ = + − + 

 
EE H H E H

1,
0,ij

i j
i j

δ
=

=  ≠

, , ,i j x y z=

(for vacuum) 

43 

(Kronecker delta) 



Maxwell Stress Tensor (cont.) 

Momentum equation: 

ˆ
S V

dT n dS dV
dt

⋅ = +∫ ∫

F p

2

1
c

= ×p E H

F

Total flow rate 
of momentum 
given to object 
from EM field 

Total force on object (rate 
of change of mechanical 
momentum) 

Rate of change of 
electromagnetic 
momentum inside of region 
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Maxwell Stress Tensor (cont.) 

ˆ
S V

dT n dS dV
dt

⋅ = +∫ ∫

F p

In many practical cases the time-average of the last term (the rate of 
change of electromagnetic momentum inside of region) is zero: 

ˆ
S

T n dS= ⋅∫F

In this case we have 

The Maxwell stress tensor (matrix) is then interpreted as the stress 
(vector force per unit area) on the surface of the body. 

 No fields inside the body 
 Sinusoidal steady-state fields 

45 

( )( ) ( ) ( ) ( )

( )( ) ( )

2

2

sin 2 sin cos sin 2

sin sin 2 0

d t t t t
dt

d t t
dt

ω ω ω ω ω ω

ω ω ω

= =

= =

Example :



Maxwell Stress Tensor (cont.) 
Example:  
Find the time-average force on a 1 m2 mirror illuminated by 
normally incident sunlight, having a power density of 1 [kW/m2]. 

TEMz wave 

ˆz z= ⋅F F

z 

x 

0
ˆ 0

1

xx xy xz xz

yx yy yz yz

zx zy zz zz

T T T T
T n T T T T

T T T T

  −   
     = ⋅ = ⋅ = −     
  − −       

F

z zzT= −F

A = 1 m2 

ˆ ˆn z= −

S Note:  
The fields are assumed to be zero 
on the back side of the mirror, and 

no fields are inside the mirror. 
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Maxwell Stress Tensor (cont.) 

2 2
0 0 0 0

2 2
0 0

front side

1 1
2 2

1 1
2 2

zz z z z zT ε µ ε µ

ε µ

 = + − + 
 

 = − + 
 

E E H H E H

E H

A = 1 m2 TEMz wave 

ˆ ˆ,x yx y= =E E H HAssume: 
0/inc inc

x y η=E H

ˆ ˆn z= −

47 

z 

x 



Maxwell Stress Tensor (cont.) 

2 2
0 0

front side

2
0

1 1
2 2

1
2

z x y

y

ε µ

µ

 = + 
 

=

F E H

H

( )

( )

2
0

*
0

2

0

2

0

1
2
1 1 Re
2 2
1 1 Re
2 2
1
4

z y

y y

y

y

H H

H

H

µ

µ

µ

µ

=

 =  
 
 =  
 

=

F H

(PEC mirror) 
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2

0

2

0

1
4
1 2
4

z y

inc
y

H

H

µ

µ

=

=

F

(The tangential magnetic field 
doubles at the shorting plate.) 

We then have: 



Maxwell Stress Tensor (cont.) 

2*
0

1 1
2 2

inc inc inc inc inc inc
z x y x y yS E H H η= = =E H

66.671 10 [N]z
−= ×F

( )
( )( )

2

0

0 0

7

2 /

4 10 2 1000 / 376.7303

inc
z y

inc
z

H

S

µ

µ η

π −

=

=

= ×

F

49 

Next, use 

2 2

0 0
1 2
4

inc inc
z y yH Hµ µ= =F

( )0/inc inc
x yE H η=

so 



Force on Dielectric Object 

50 

Here we calculate the electrostatic force on a  
dielectric object in an electric field using dipole moments.  

This is an alternative to using the Maxwell stress tensor. 

Consider first the force on a single electrostatic dipole: 

( ) ( )( )F q E r E r+ −= −

( )( )cF q r E r≈ ∆ ⋅∇

For small dipoles: 

Note that we have a gradient of a vector here. This is called a “dyad.” 

( )cF p E r≈ ⋅∇
or 

E

r +

r −

q

q−

r r r+ −∆ = −

cr
p q r= ∆



Force on Dielectric Object (cont.) 
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Dyadic representation: 

( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆx y z x y z x y zE x xE yE zE y xE yE zE z xE yE zE
x y z
∂ ∂ ∂

∇ = + + + + + + + +
∂ ∂ ∂

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆy y yx x xz z z
E E EE E EE E EE x x x y x z y x y y y z z x z y z z

x x x y y y z z z
∂ ∂ ∂     ∂ ∂ ∂∂ ∂ ∂

∇ = + + + + + + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

( )ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ

x y z

y y yx x xz z z
x y z

r E x y z E

E E EE E EE E Ex y z x y z x y z
x x x y y y z z z

∆ ⋅∇ = ∆ + ∆ + ∆ ⋅∇ =

∂ ∂ ∂     ∂ ∂ ∂∂ ∂ ∂
∆ + + + ∆ + + + ∆ + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

or 

Hence we have: 



Force on Dielectric Object (cont.) 
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For a dielectric object: 

0 eP Eε χ=

( )1r eε χ= +

( ) ( ) ( ) ( )cF p E r dF r P r E r dV= ⋅∇ ⇒ = ⋅∇

( ) ( )
V

F P r E r dV= ⋅∇∫

Since the body does not exert a force on itself, we can use the external electric field E0.  

( ) ( )0
V

F P r E r dV= ⋅∇∫

0 rε ε ε=

V



Force on Dielectric Object (cont.) 
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( ) ( )0 0e
V

F E r E r dVε χ= ⋅∇∫
We then have: 

( ) ( )0 e
V

F E r E r dVε χ= ⋅∇∫

( ) ( )( )0
1
2e

V

F E r E r dVε χ= ∇ ⋅∫

( )( )2
0

1
2e

V

F E r dVε χ= ∇∫

We can also write: 

or 

or 



Force on Dielectric Object (cont.) 
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A non-uniform electrical field will generate a net attractive force on a 
neutral piece of matter.  The force is directed toward the region of 
higher field strength. 

http://electrogravityphysics.com/html/sec_4.html 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwiZjqegs_3OAhVU0WMKHZ3GB_AQjRwIBw&url=http://electrogravityphysics.com/html/sec_4.html&psig=AFQjCNGaIQuyMzm2VVYeODqnLJpsOAhkEQ&ust=1473342648446729


Force on Magnetic Object 
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We have (derivation omitted) the magnetostatic force as: 

( ) ( )0m
V

F H r B r dVχ= ⋅∇∫

Hence, we have 

or 

( ) ( )0
V

F M r B r dV= ⋅∇∫

mM Hχ=

( ) ( )0
m

V

F B r B r dVχ
µ

= ⋅∇∫

( )( )21
2

m

V

F B r dVχ
µ

= ∇∫

Recall: 

0 rµ µ µ=

V

or 



Foster's Theorem 

Consider a lossless system with a port that leads into it: 

0indX
dω

>

Lossless system 
 (source free) 

Coaxial port cε ε ε
µ µ

′= =
′=

Sp 

z 

in inZ jX=

PEC enclosure 

R. E. Collin, Field Theory of Guided Waves, IEEE Press, Piscataway, NJ, 1991. 
56 

Foster’s theorem: 



Foster's Theorem (cont.) 

1
in

in

jX
jB

=

1
in

in

X
B

= −

2

1in in

in

dX dB
d B dω ω

=

1
in

in

Z
Y

=

The same holds for the input susceptance: 

57 

0indB
dω

>



Foster's Theorem (cont.) 

Start with the following vector identity: 

( )
* * *E E EH H H

ω ω ω
     ∂ ∂ ∂

∇ ⋅ × = ⋅ ∇× − ⋅ ∇×     
∂ ∂ ∂     

( )
* * *H H HE E E

ω ω ω
     ∂ ∂ ∂

∇ ⋅ × = ⋅ ∇× − ⋅ ∇×     
∂ ∂ ∂     

Add these last two equations together:  

( ) ( ) ( )A B B A A B∇⋅ × = ⋅ ∇× − ⋅ ∇×

Hence we have (applying twice, for two different choices of the (vectors) 

58 



Foster's Theorem (cont.) 

( )

( )

* * * *

* *

H E H HE H E E

E EH H

ω ω ω ω

ω ω

     ∂ ∂ ∂ ∂
∇ ⋅ × + × = ⋅ ∇× − ⋅ ∇×     

∂ ∂ ∂ ∂     
   ∂ ∂

+ ⋅ ∇× − ⋅ ∇×   
∂ ∂   

Using Maxwell's equations for a source-free region, 

( )

( )

* * * *

* *

H E H HE H j H E

E EH j E

ωµ
ω ω ω ω

ωε
ω ω

     ∂ ∂ ∂ ∂
∇ ⋅ × + × = ⋅ − − ⋅ ∇×     

∂ ∂ ∂ ∂     
   ∂ ∂

+ ⋅ ∇× − ⋅   
∂ ∂   
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Foster's Theorem (cont.) 

We then have 

( )

( )

* * * *

* *

H E H HE H j H E

E EH j E

ωµ
ω ω ω ω

ωε
ω ω

     ∂ ∂ ∂ ∂
∇ ⋅ × + × = ⋅ − − ⋅ ∇×     

∂ ∂ ∂ ∂     
   ∂ ∂

+ ⋅ ∇× − ⋅   
∂ ∂   

( ) ( ) ( )
* *

* * *H EH j E j E jωε ωε ωε
ω ω ω ω ω

∂ ∂ ∂ ∂ ∂
∇× = ∇× = = − −

∂ ∂ ∂ ∂ ∂

( ) ( ) ( )
* *

* * *E HE j H j H jωµ ωµ ωµ
ω ω ω ω ω

∂ ∂ ∂ ∂ ∂
∇× = ∇× = − = +

∂ ∂ ∂ ∂ ∂

Using Maxwell's equations again, and the chain rule, we have: 
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Foster's Theorem (cont.) 

( ) ( )

( ) ( )

* * * *
*

* *
*

H E H EE H j H E j E j

H EH j H j j E

ωµ ωε ωε
ω ω ω ω ω

ωµ ωµ ωε
ω ω ω

     ∂ ∂ ∂ ∂ ∂
∇ ⋅ × + × = ⋅ − − ⋅ − −     

∂ ∂ ∂ ∂ ∂     
   ∂ ∂ ∂

+ ⋅ + − ⋅   
∂ ∂ ∂   

Simplifying, we have 

( ) ( )
* *

* *H EE H E j E H j Hωε ωµ
ω ω ω ω

 ∂ ∂ ∂ ∂   ∇ ⋅ × + × =− ⋅ − + ⋅     ∂ ∂ ∂ ∂    

cancels 

( ) ( )
* *

2 2H EE H j E Hωε ωµ
ω ω ω ω

 ∂ ∂  ∂ ∂    ∇ ⋅ × + × = +      ∂ ∂ ∂ ∂     

or 
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Foster's Theorem (cont.) 

( ) ( )
* *

2 2H EE H j E Hωε ωµ
ω ω ω ω

 ∂ ∂  ∂ ∂    ∇ ⋅ × + × = +      ∂ ∂ ∂ ∂     

Applying the divergence theorem, 

* *

ˆ 4 e m
S

H EE H n dS j
ω ω

 ∂ ∂
× + × ⋅ =  +    ∂ ∂ 

∫ W W

Therefore, 
* *

ˆIm 0
S

H EE H n dS
ω ω

 ∂ ∂
× + × ⋅ > 
∂ ∂ 

∫

62 

Hypothesis: the total stored energy must be positive. 



Foster's Theorem (cont.) 

The tangential electric field is only nonzero at the port. Hence we have: 

* *

ˆIm 0
S

H EE H n dS
ω ω

 ∂ ∂
× + × ⋅ > 
∂ ∂ 

∫

* *

ˆIm 0
pS

H EE H n dS
ω ω

 ∂ ∂
× + × ⋅ > 
∂ ∂ 

∫

Assume that the electric field (voltage) at the port is fixed (not changing 
with frequency). 

*

0E
ω

∂
=

∂

63 

Then we have 
Lossless system
(source free)

Coaxial portcε ε ε
µ µ

′= =
′=

Sp

z

in inZ jX=



Foster's Theorem (cont.) 

At the coaxial port: 

*

ˆIm 0
pS

HE n dS
ω

 ∂
× ⋅ > 
∂ 

∫

ˆ

ˆ
E E

H H
ρ

φ

ρ

φ

=

=
ˆ ˆn z=

Hence: 
*

Im 0
pS

H
E dSφ
ρ ω

 ∂
>  ∂ 

∫

or ( )*Im 0
pS

E H dSρ φω
∂

>
∂ ∫

(since the electric field is 
fixed and not changing 
with frequency) 

64 

Then 

Lossless system
(source free)

Coaxial portcε ε ε
µ µ

′= =
′=

Sp

z

in inZ jX=



Foster's Theorem (cont.) 

( )Im 2 0zP
ω
∂

>
∂

*Im 0zVI
ω
∂   > ∂

2 *Im 0inV Y
ω
∂  − > ∂

*Im 0inY
ω
∂   < ∂

( )z inI V Y− =

( )*Im 0
pS

E H dSρ φω
∂

>
∂ ∫

65 

Lossless system
(source free)

Coaxial portcε ε ε
µ µ

′= =
′=

Sp

z

in inZ jX=



Foster's Theorem (cont.) 

*Im 0inY
ω
∂   < ∂

[ ]Im 0inY
ω
∂

>
∂

0inB
ω
∂

>
∂

0inX
ω
∂

>
∂

66 



Foster's Theorem (cont.) 
Example: Short-circuited transmission line 

ZL = 0 Z0 
Zin 

l 

( )0 taninZ jZ lβ= Xin 

β l π/2 3π/2 

Inductive 

Capacitive 
5π/2 

LCβ ω=

67 
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