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Theorem on Field Representation:

N

Assume E(X’ v, Z) _ Eo (X, y)e—7z |
> Guided wave
H(x,y,z2)=H,(x,y)e "
Then Et — Et (Ez H z) The “t” subscript denotes

transverse (to 2)

Ht :ﬂt(Ez’Hz)



Proof (for E,)

VxH =Jwe E
1 ( oH, 6HX)
SO Ey = — +
Jwe, OX 0z
o E, = _1 (—aHZ—Q/I-Xj
Jwe, OX
Now solve for H, : Need H,



L __ 1 (e, oE,
C o joul oy oz

1 (8Ez j
—— +7E,
Jou\ oy

Substituting this into the equation for Ey yields the following result:

1 oH,
E, =- (— —7/ij

OX

U

1 | oH 1 \(oE |
E, =- ———L—y| —— ~=+yE,
Jos,|  OX Jou )\ oy |

Next, multiply by — Ja)lu( ja)gc) = k?




. oH, OE
K’E, = jou—=—y—2—»°E
y = Jop— ' 7B

SO

Jou \oH, y |OE,
B, = —— | T2 L2
v +Kk* ) OX v +k® ) oy

The other components may be found similarly.



Summary of Fields

—Jou |OH, y \OE,
E, = 2 2 —| 7,2 2

K*+y° ) oy K*+y° ) OX
c o jou oH, 4 OE,
4 7/2+k2 OX )/2+k2 oy

Joe )\ OE, y \oH,
R, =|—5—— | L2, 2
K +y° ) oy \k“+y°) Ox

(—jwej@E ( y jaHz
H, = -5 2 L2
v +k®)ox \y +k°) oy



These may be written more compactly as

S

E, = k% _|_IL;2 (ZXVtHZ)_kzjiyz (ViE:)
joe (5

|:|t=k21+7/2(vath)—kzzyz(VtHz)



In cylindrical coordinates we have

We can thus also express the fields of a guided wave in terms
of E, and H, in cylindrical coordinates (please see next slide).



Summary of Fields

cylindrical coordinates
Jou 1(0H, y [ OE,
S =" k* + y° 06 ) KZ+y2\ 0
+y° p\ 09 +y7°\ Op
jou (8HZ] y 1(8Ezj
E¢ - K2 4 o2 T2, 2
+y°\ Op K +y° p\ 0¢
Jos 1( OE, y [OH,
Hp - K2 4 o2 .- 2
+7° p\ 09 +7°\ Op

Joes [ OE, y 1(0oH,
Ry=—— T2, 2
K+y°\0p ) ki+y° p\ 0¢




TEM, mode:
TM, mode:

TE, mode:

Hybrid mode:

Ez:O HZ:O
E =0 H =0
E,=0 H,=#0

E,. =0 H, =0

Transmission line

Waveguide
Waveguide

Fiber-optic guide
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Assume a TEM wave:

To avoid having a completely zero field, 7/2 + k2 =0
> Y = + jk
k — kl_ ij

We then have 3 = jk

Note: The plus sign is chosen to give a decaying wave:

e—;/z _ e—jkz _ e—jk'ze—k”z
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Propagation constant vs. wavenumber notation:
y=a+)p

K,=p—la =y 7=k,

Note that k, is called the “propagation wavenumber” of the mode.

e—;/Z — e—jkzz e—yz _ e—jkzz _ e—az e—j,Bz
Note:
TEM mode: k — k A TEM mode can propagate on a lossless
‘ transmission line at any frequency.
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The field on a lossless transmission line is a TEM mode (proven later).

Lossless TL:

kzzwm:k:w\%
so LC=ue

1
V. = —

1
"IC Jwe

The phase velocity is equal
V. = Cd to the speed of light in the
dielectric.




Lossy TL (dielectric but no conductor loss): The mode is still a TEM mode

Hence

k. :_jyz_j\/g);a joL)(G+ jaC) =k = o\[ue, = o u(e,— jel)

Note:

The TEM, —> —J\/(JCOL)(G+ joC) =0)\/H(8é—180")
assumption requires
that R = 0. ] . 5 L
Otherwise, E, # 0 — —(JG)L)(G"‘ JCUC):CO ,U(gc_ ch)

(from Ohm's law).

Real part: LC = ,ugc'

Imaginary part: LG = awue!

r’
&
Dividing these two equations gives us: G = (Q)C)_‘;

&
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The fields of a TEM mode may be written as:

E(X, y’ Z) — EO (X1 y) e_ﬂ
— Lto (X1 y) e’

H(x,y,z)=H,(x,y)e” y = JK

z

Theorem

E.o(X,y) and Ho(X, Y) are 2D static field functions.
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Proof

X y z

O o0 O

VxE, = x oy
E, E, O
o[ s

Therefore, only a Z component of the curl exists.
We next prove that this must be zero.
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Use
VxE=Vx(E,e™)
=e " VxE,,+V(e")xE,
=e " VxE,—ye " IxE,

2-(VxE)=e""Z-(VXE,)

Also,
2-(VxE)=2-(-jouH)

:—ja),uy‘fz =0
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Hence

Therefore,

|ND

'(VXEto) =0

VXEto(X1 y):Q
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Also,

V-E=0 ( No charge density in the time-harmonic
— steady state, for a homogeneous medium)

Therefore, V. (EtO e 7’ ) =0

(V 'Eto)e_yZ +E -V(e7)=0

(V-Ep)e™ +E (2(_7e_ﬂ )) =0

Hence, V 'Eto (x, y) =0
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I
o

VxE (X’ y)

V'Eto(x1 y):O

VXE, (X1 y) =0
= E,=-VO(xY)

V.-E, =0

= V®=0
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VeD(x,y) =0

® =constant on AorB (since E._ =0 onconductors)

—tan =

The potential function is unique (because of the unigueness theorem of
statics), and hence is the same as a static potential function (which also
obeys the Laplace equation and the same BCs).
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The static property shows us why a TEM, wave can exist on a
transmission line (two parallel conductors).

Transmission line

A nonzero field can exist at DC.
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The static property also tells us why a TEM, wave cannot exist
Inside of a waveguide (hollow conducting pipe).

Waveguide

No field can exist inside at DC.

(This would violate Faraday's law:

at DC the voltage drop around a closed path must be zero.)

-]

c i

23



Similarly,

SO
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VxH =Jwe,E
Xy 1z
E=.1 ° 9 —y
Joe |OX oy
H, H, 0
SO
E =2 H E =—7
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Also, _ _ —
Y _ sz _ Jk _a) Hé, —

jowe, Jwe, Jwe, — we

This can be written as

H =2 (2xE)
i
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TEM mode
y
X
pi=Gp(1)d
Ca
p, =CV

C =capacitance / length

V=|E-dr

[3> S | TD
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Note:
Hence J = 2(&] n= Lad In general
E F &
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A TEM, mode requires a homogeneous substrate.
y

T Coax patrtially filled with dielectric

Assume a TEM mode

- £ (- BCs .

X X 770 gr :I; gr
E- E,\H, ) n \/ﬂr 1, 78
T 1

Take the ratio Contradiction! Jue =1
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Example: Microstrip Line

Assume a TEM mode:

(requires a homogeneous
space of material)

1 ——— ™™™ 1
‘Jsz = eff pS (X)
Eoi] Homogeneous model
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Strip in free space (or homogeneous space) with a static charge
density (no ground plane):

1/ 7 d
/05 (X) - 5 5 IOI
J(W/2)? =X { P (X)
(This was first derived by Maxwell using < > >
conformal mapping.) W
w/2
pi= | PO
-w/2
Hence:
1/ 7
J 1,

O N

In this result, |, is the total current [Amps] on the strip at z = 0.

This is accurate for a narrow strip (since we ignored the ground plane).
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Find E, H We first find E,, and H,,

E. (X’ y) =-V®(X,Y)

T V2D (p) =0
b d(a) =V,

®(b) =0

1o(,%0)
oD / p op

= =) ®=clnp+ec,
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Boundary conditions:
¢, Ina+c, =V,

c,Inb+c,=0

SO

c,(Ina—Inb) =V,

V,Inb

.n(—gj
o )

C, = C2:—C1|nb=—

Therefore
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~ 0D
Eo(Xy)==-VO(X,y) = —pP 5
I,

Hence or
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This result is valid at
any frequency.

k:a)\/;Tsc
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Y Find the characteristic impedance.

+ — jkz
V' =V,e

— X |” =2r7al, =2raH ,(a)

:Zza( lj Vob g le
14 In( j
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Find (L, C) for lossless coax.

VLC =/ ue (assume u= 1))

Solve for L and C (multiply and divide the above two equations):

27y,

0

ngl—oln(gj [H/m]

T a

[F/m]
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Find (L, C, G) for lossy coax.

LC :ﬂg(,; chl)ossless:\/z(’)iln(gj J
& 2w \a
\/E _ Zlossless 4
C 0 gn

Result:

&

r
Ic
/

E

rc

_'”(—Zj G = (C)Z= [S/m]
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TEM mode (lossless conductors)

i

¢ -dr
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<
||
| 3> Sy |0
A~~~
S
(@h
>
+
h
(@h
<<
~—

2|2
|
| 3> Sy | TO

Note:
The voltage v is path
independent in the %,
(x,y) plane. — I— 2 ds
Lot
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Use v X g = ——
- ot
Take x and y components:
o4 _od 04 A
oo oy oz ot oX 0z

Hence, we have

X2
I
> |0

YRS
| 3>ty |CO
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N dl=12x dﬁzzx(gdx+2dy)
= ydx — Xdy

[>> ey [T > '—;IUJ

(%dy—%dx) (x% + yJ3 ) (gdx—gdy)

[3> Sy |TO

- Q'ﬁcvdl =Y
But | = ﬁ (flux per meter)
i
p =L so OV O :
=—(-Li)
oz ot
Hence _

oV Ol Note:
—=—L— L is the magnetostatic (DC) value
Oz ot (a fixed number).




If we add R into the equation:

N_ gi-Ld
OZ ot

This is justifiable if the mode is approximately a TEM mode
(small conductor loss).

Please see the derivation in the Appendix.
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Now use this path: C, ‘( ¥
Y[\
el
I
The contour C; hugs : I
the A conductor. | ,'
\‘ h
N
A B

Ampere’s law: 1 = Cﬁ({f dr = Cj‘)(%dx+¢?fydy)
C C,

Note:

There is no
displacement current
through the surface,

since E, = 0.
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Now use

45



=— (% dx—%dy)+P( 7,dx— 7,dy)

C, G



p, =Cv Note:

] C and G are the static
e = GV (DC) values.




Hence

A _ 9 (_cv)-Gv
oz ot
or
a_ —C N Gv
0z ot
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Alternate derivation of second
Telegrapher’s equation

qSJ_f-dL:i(ZJrAz,t)—i(z,t)

1(z+Az,1)

Ampere's law:

=_-AzGv-— Azi(Cv)
dt

Hence

i(Z+AZ,t)—i(Z,t)=—AZGV—AZ%(CV)

—> d_ _gy_c%

0Z ot
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Include R

Assume that current still flows
in the z direction only, and R is
unigue in the time domain.

y = flux/meter

¢-dr =v(z+Az,t)-v(z,t)+(R +R,)Azi

Hence:

V(z+Az,t)-v(z,t)+RAZi =—A z%(Li)
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