ECE 6340 Intermediate EM Waves

Fall 2016

Prof. David R. Jackson Dept. of ECE

Notes 11

Waveguides

Waveguide geometry:

A hollow pipe waveguide is assumed here.

$$
k=\omega \sqrt{\mu \varepsilon_{c}}
$$

Assumptions:

1) The waveguide boundary is PEC
2) The material inside is homogeneous (it may be lossy)
3) A traveling wave exists in the z direction: $\exp \left(-j k_{z} z\right)$.

Comparison of Systems

Transmission lines

- Can propagate a signal at any frequency
- Have minimal dispersion (only due to loss for TEM mode) - good for signal propagation
- May or may not be shielded (e.g., coax vs. twin lead)
- Become very lossy at high frequencies
- Cannot handle high power (unless the cable are very big)

Waveguides

- Can handle high power
- Have low loss (lower than transmission lines)
- Are completely shielded
- Can only be used above the cutoff frequency (not suitable for low frequencies)
- Have large amounts of dispersion (not the best for signal propagation)

Fiber Optic Cables

- Have very low loss (lower than transmission lines or waveguides)
- Have very low dispersion (lower than transmission lines)
- Cannot handle high power
- Require electro-optic interfaces with electronic and RF/microwave equipment

Comparison of Systems (cont.)

Free Space Propagation (Wireless System with Antennas)

- No need for transmitter and receiver to be physically connected
- Free space can propagate a signal at any frequency
- Free space has no dispersion
- Requires antennas, which have a limited bandwidth and may introduce dispersion
- Has $1 / r^{2}$ propagation loss (worse then guiding systems for short distances, better than guiding systems for longer distances ($k r \gg 1$)
- Usually not used for high power transfer due to propagation loss and interference

Guiding system: power $\propto e^{-2 \alpha z}$

Free-space system: power $\propto A / r^{2}$

Theorem:

There is no TEM_{z} mode

Proof:

Assume TEM mode $\left(k_{z}=k\right)$:

$$
\begin{aligned}
\underline{E}(x, y, z) & =\underline{E}_{t 0}(x, y) e^{-j k z} \\
\underline{E}_{t 0}(x, y) & =-\nabla \Phi(x, y) \\
\nabla^{2} \Phi & =0
\end{aligned}
$$

No TEM Mode (cont.)

$$
\left[\begin{array}{rlrl}
\nabla^{2} \Phi & =0 & & \underline{r} \in S \\
\Phi & =\text { constant } & & \underline{r} \in C
\end{array}\right.
$$

Uniqueness theorem of electrostatics:

$$
\Phi(x, y)=\text { constant }
$$

Hence $\quad \underline{E}_{t 0}=-\nabla \Phi=\underline{0}$

\Longrightarrow trivial field

Helmholtz Equation for WG

Assume TM $: \quad \nabla^{2} E_{z}+k^{2} E_{z}=0 \quad E_{z}(x, y, z)=E_{z 0}(x, y) e^{-j k_{z} z}$

$$
\begin{gathered}
\nabla^{2}=(\underbrace{\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}})+\frac{\partial^{2}}{\partial z^{2}} \\
\nabla_{t}^{2}=\nabla_{t} \cdot \nabla_{t} \\
\nabla_{t}=\underline{\hat{x}} \frac{\partial}{\partial x}+\underline{\hat{y}} \frac{\partial}{\partial y}
\end{gathered}
$$

$$
\text { so } \quad \nabla_{t}^{2} E_{z}+\left(k^{2}-k_{z}^{2}\right) E_{z}=0
$$

$$
\nabla_{t}^{2} E_{z}+\left(k^{2}-k_{z}^{2}\right) E_{z}=0
$$

Define $\quad k_{c}^{2} \equiv k^{2}-k_{z}^{2} \quad$ "cutoff wavenumber"

Factoring out the z dependence,

$$
\nabla_{t}^{2} E_{z 0}+k_{c}^{2} E_{z 0}=0
$$

(2-D Helmholtz equation)
(similarly for $H_{z 0}$)

Helmholtz Equation for WG (cont.)

The transverse field components of the 2D fields are given by:

$$
\begin{aligned}
& E_{x 0}=\frac{-j \omega \mu}{k^{2}-k_{z}^{2}} \frac{\partial H_{z 0}}{\partial y}-\frac{j k_{z}}{k^{2}-k_{z}^{2}} \frac{\partial E_{z 0}}{\partial x} \\
& E_{y 0}=\frac{j \omega \mu}{k^{2}-k_{z}^{2}} \frac{\partial H_{z 0}}{\partial x}-\frac{j k_{z}}{k^{2}-k_{z}^{2}} \frac{\partial E_{z 0}}{\partial y} \\
& H_{x 0}=\frac{j \omega \varepsilon_{c}}{k^{2}-k_{z}^{2}} \frac{\partial E_{z 0}}{\partial y}-\frac{j k_{z}}{k^{2}-k_{z}^{2}} \frac{\partial H_{z 0}}{\partial x} \\
& H_{y 0}=\frac{-j \omega \varepsilon_{c}}{k^{2}-k_{z}^{2}} \frac{\partial E_{z 0}}{\partial x}-\frac{j k_{z}}{k^{2}-k_{z}^{2}} \frac{\partial H_{z 0}}{\partial y}
\end{aligned}
$$

Property of k_{c}

Theorem

$$
k_{c}=\text { real number (even if } \varepsilon_{c} \text { is complex) }
$$

Proof

$$
\text { Let } \quad \underline{V}(x, y) \equiv E_{z 0}^{*} \nabla_{t} E_{z 0}
$$

2-D divergence theorem:

$$
\int_{S}\left(\nabla_{t} \cdot \underline{V}\right) d S=\oint_{C} \underline{V} \cdot \underline{\hat{n}} d l
$$

Property of k_{c} (cont.)

$$
\begin{aligned}
& \text { On C: } \quad \underline{V} \cdot \underline{\hat{n}}=E_{z 0}^{*}\left(\nabla_{t} E_{z 0} \cdot \underline{\hat{n}}\right) \\
& =0
\end{aligned}
$$

Hence

$$
\int_{S}\left(\nabla_{t} \cdot \underline{V}\right) d S=0
$$

Therefore

$$
\int_{S} \nabla_{t} \cdot\left(E_{z 0}^{*} \nabla_{t} E_{z 0}\right) d S=0
$$

Use

$$
\nabla \cdot(\psi \underline{A})=\nabla \psi \cdot \underline{A}+\psi \nabla \cdot \underline{A}
$$

(This also holds for ∇_{t}.)
or

$$
\int_{S}\left[\left(\nabla_{t} E_{z 0}^{*}\right) \cdot\left(\nabla_{t} E_{z 0}\right)+E_{z 0}^{*} \nabla_{t}^{2} E_{z 0}\right] d S=0
$$

Property of k_{c} (cont.)

Hence

$$
\begin{gathered}
\int_{S}\left|\nabla_{t} E_{z 0}\right|^{2} d S-\int_{S} E_{z 0}^{*} k_{c}^{2} E_{z 0} d S=0 \\
k_{c}^{2}=\frac{\int_{S}\left|\nabla_{t} E_{z 0}\right|^{2} d S}{\int_{S}\left|E_{z 0}\right|^{2} d S}
\end{gathered}
$$

Hence $k_{c}{ }^{2}=$ real positive number
Note: This is also a variational equation for k_{c}^{2} (proof omitted).

WG Eigenvalue Problem

$$
\nabla_{t}^{2} E_{z 0}+k_{c}^{2} E_{z 0}=0
$$

Then

Denote

$$
\begin{aligned}
\psi(x, y) & =E_{z 0}(x, y) \\
\lambda & =-k_{c}^{2} \text { (eigenvalue) }
\end{aligned}
$$

$$
\begin{aligned}
\nabla_{t}^{2} \psi(x, y) & =\lambda \psi(x, y) \\
\psi(x, y) & =\left.0\right|_{C}
\end{aligned}
$$

Note: λ is independent of frequency and permittivity (from the form of the eigenvalue problem).

WG Eigenvalue Problem (cont.)

Assume TE_{z}

$$
\text { Let } \begin{aligned}
\psi(x, y) & =H_{z 0}(x, y) \\
\lambda & =-k_{c}^{2}
\end{aligned}
$$

Then

$$
\begin{aligned}
\nabla_{t}^{2} \psi(x, y) & =\lambda \psi(x, y) \\
\frac{\partial \psi(x, y)}{\partial n} & =\left.0\right|_{C}
\end{aligned}
$$

Note:

The B.C. follows from Ampere's law (proof on next slide).

Once again: λ is independent of frequency and permittivity (from the form of the eigenvalue problem).

WG Eigenvalue Problem (cont.)

$\uparrow \underline{\hat{n}}=\underline{\hat{z}} \quad$ (local coordinates)
 PEC

$$
E_{x}=E_{y}=0
$$

$\nabla \times \underline{H}=j \omega \varepsilon_{c} \underline{E}$

Hence

$$
\left.\begin{array}{l}
\frac{\partial H_{z}^{\prime}}{\partial y}-\frac{\partial H_{y}}{\partial z}=0 \\
\frac{\partial H_{z}^{\prime}}{\partial x}-\frac{\partial H_{x}}{\partial z}=0
\end{array}\right\} \quad \frac{\partial \underline{H}_{t}}{\partial n}=\underline{0}
$$

Note: We also have $H_{n}=0$ on PEC.

- The value k_{c} is always real, even if the waveguide is filled with a lossy material.
- The value of k_{c} does not depend on the frequency or the material inside the waveguide.
- The value of k_{c} only depends on the geometrical shape of the waveguide cross section.

"Real" Theorem for Field

Assume $\mathrm{TM}_{z} \quad$ (A similar result holds for $H_{z 0}$ of a TE_{z} mode.)

$$
E_{z 0}(x, y)=c_{1} R_{1}(x, y)
$$

(This is valid even if the medium is lossy.)
where $R_{1}(x, y)$ is a real function, and c_{1} is a complex constant.

We assume that the waveguide shape is such that it does not support degenerate modes (more than one mode with the same value of k_{c}, and hence the same value of wavenumber k_{z}).

The shape of the waveguide field corresponding to a particular k_{c} is unique.

"Real" Theorem for Field

Proof

$$
\nabla_{t}^{2} E_{z 0}+k_{c}^{2} E_{z 0}=0 \quad \text { Take the real part of both sides. }
$$

Note that $\operatorname{Re}\left(\nabla_{t}^{2} E_{z 0}\right)=\nabla_{t}^{2} \operatorname{Re} E_{z 0}$

Hence

$$
\begin{aligned}
& \nabla_{t}^{2} \operatorname{Re} E_{z}+k_{c}^{2} \operatorname{Re} E_{z}=0 \\
& \text { and } \\
& \quad \operatorname{Re} E_{z}=0 \text { on } C
\end{aligned}
$$

"Real" Theorem for Field (cont.)

$$
\begin{gathered}
\nabla_{t}^{2} \operatorname{Re} E_{z 0}+k_{c}^{2} \operatorname{Re} E_{z 0}=0 \\
\operatorname{Re} E_{z 0}=0 \text { on } C
\end{gathered}
$$

Similarly,

$$
\begin{aligned}
& \nabla_{t}^{2} \operatorname{Im} E_{z 0}+k_{c}^{2} \operatorname{Im} E_{z 0}=0 \\
& \operatorname{Im} E_{z 0}=0 \text { on } C
\end{aligned}
$$

The solution of the eigenvalue problem for a given eigenvalue is unique to within a multiplicative constant (we assumed nondegenerate modes).

Hence $\operatorname{Im} E_{z 0}(x, y)=A \operatorname{Re} E_{z 0}(x, y)$

$$
A=\text { real constant }
$$

"Real" Theorem for Field (cont.)

Therefore

$$
\begin{aligned}
E_{z 0}(x, y) & =\operatorname{Re} E_{z 0}(x, y)[1+j A] \\
& =R(x, y) c_{1}
\end{aligned}
$$

(proof complete)

Corollary

$$
\underline{E}_{t 0}(x, y)=c_{2} \underline{R}_{2}(x, y)
$$

where $R_{2}(x, y)$ is a real vector function, and c_{2} is a complex constant.
Note: The transverse field may be out of phase from the longitudinal field (they cannot both be assumed to be real at the same time, in general).

Proof

Assume a TM_{z} mode (similar proof for TE_{z} mode).

From the guided-wave equations:

$$
\begin{aligned}
& E_{x 0}=-\frac{j k_{z}}{k^{2}-k_{z}^{2}} \frac{\partial E_{z 0}}{\partial x} \\
& E_{y 0}=-\frac{j k_{z}}{k^{2}-k_{z}^{2}} \frac{\partial E_{z 0}}{\partial y}
\end{aligned}
$$

Corollary (cont.)

Hence

$$
\begin{aligned}
& \underline{E}_{t 0}=\left(\frac{-j k_{z}}{k^{2}-k_{z}^{2}}\right) \nabla_{t} E_{z 0} \\
&=\underbrace{\left(\frac{-j k_{z}}{k^{2}-k_{z}^{2}}\right)}_{C_{3}} \underbrace{\nabla_{t}\left(c_{1} R(x, y)\right)}_{C_{1} \underline{R}_{2}} \\
& \underline{R}_{2} \equiv \nabla_{t} R(x, y)
\end{aligned}
$$

Therefore

$$
\underline{E}_{t 0}=c_{2} \underline{R}_{2}(x, y) \quad \text { with } \quad c_{2}=c_{1} c_{3}
$$

Wavenumber

$$
k_{c}^{2} \equiv k^{2}-k_{z}^{2}=\text { real number }
$$

(The value of k_{c} is independent of frequency and material.)

$$
\begin{aligned}
& \text { so } k_{z}=\left(k^{2}-k_{c}^{2}\right)^{1 / 2} \\
& k^{2}=\omega^{2} \mu \varepsilon_{c}=k_{0}^{2} \mu_{r} \varepsilon_{r c}
\end{aligned}
$$

The wavenumber is written as

$$
k_{z}=\beta-j \alpha
$$

Attenuation constant

Phase constant

Wavenumber: Lossless Case

$$
\varepsilon_{c}=\varepsilon-j\left(\frac{\sigma}{\omega}\right)=\varepsilon_{c}^{\prime}-j \varepsilon_{c}^{\prime \prime}
$$

No conductivity
No polarization loss

$$
\begin{gathered}
\mu=\mu^{\prime}=\text { real } \\
k_{z}=\left(\omega^{2} \mu \varepsilon-k_{c}^{2}\right)^{1 / 2}
\end{gathered}
$$

Conclusion: $k_{z}=$ real or imaginary

Lossless Case: Cutoff Frequency

$$
k_{z}=\left(\omega^{2} \mu \varepsilon-k_{c}^{2}\right)^{1 / 2}
$$

Cut-off frequency $\omega_{c}: k_{z}=0 \quad \omega_{c}^{2} \mu \varepsilon=k_{c}^{2}$

$$
\text { Hence } \quad f_{c}=\frac{1}{2 \pi \sqrt{\mu \varepsilon}} k_{c}
$$

Note: $\quad k_{c}=\left.k\right|_{\omega=\omega_{c}}$
(This is a physical interpretation of k_{c})

Lossless Case: Wavenumber

Above cutoff $f>f_{c}$

$$
\begin{aligned}
k_{z} & =\sqrt{k^{2}-k_{c}^{2}} \\
& =\sqrt{\omega^{2} \mu \varepsilon-\omega_{c}^{2} \mu \varepsilon} \\
& =\omega \sqrt{\mu \varepsilon} \sqrt{1-\left(\frac{\omega_{c}}{\omega}\right)^{2}} \\
& =k \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}} \\
\beta & =k \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}} \\
\alpha & =0
\end{aligned}
$$

Lossless Case: Wavenumber (cont.)

Below cutoff $f<f_{c} \quad k_{z}=\left(k^{2}-k_{c}^{2}\right)^{1 / 2}$

$$
=-j \sqrt{k_{c}^{2}-k^{2}}
$$

$$
=-j k_{c} \sqrt{1-\left(\frac{k}{k_{c}}\right)^{2}}
$$

$$
=-j k_{c} \sqrt{1-\left(\frac{f}{f_{c}}\right)^{2}}
$$

$$
\begin{aligned}
& \beta=0 \\
& \alpha=k_{c} \sqrt{1-\left(\frac{f}{f_{c}}\right)^{2}}
\end{aligned}
$$

Lossless Case: Cutoff Frequency

Lossless ($k=$ real)

Cutoff frequency f_{c} :

$$
\begin{gathered}
k_{z}=0 \\
(\beta=0, \alpha=0)
\end{gathered}
$$

Lossy Case: Cutoff Frequency
Lossy ($k=k^{\prime}-j k^{\prime \prime}$)

Mainly reactive attenuation

$$
\begin{aligned}
& \quad \alpha=\beta \\
& \Rightarrow \omega_{c}^{\text {lossy }} \sqrt{\mu \varepsilon_{c}^{\prime}}=k_{c} \quad \text { (This is a homework problem.) } \\
& \text { Also } \Rightarrow \text { watts = VARS } \quad \text { (This is a homework problem.) }
\end{aligned}
$$

Lossless Case: Phase Velocity

Above cutoff: $f>f_{c}$

$$
\begin{aligned}
v_{p} & =\frac{\omega}{\beta}=\frac{\omega}{\left[k \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}\right]} \\
& =\frac{\omega}{\omega \sqrt{\mu \varepsilon} \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}}
\end{aligned}
$$

SO

$$
v_{p}=\frac{c_{d}}{\sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}}
$$

where

$$
c_{d}=\frac{1}{\sqrt{\mu \varepsilon}}
$$

Lossless Case: Group Velocity

Above cutoff: $\quad f>f_{c}$

$$
\begin{gathered}
\beta^{2}=k^{2}-k_{c}^{2}=\omega^{2} \mu \varepsilon-k_{c}^{2} \\
2 \beta d \beta=2 \omega d \omega \mu \varepsilon \\
v_{g}=\frac{d \omega}{d \beta}=\frac{1}{\mu \varepsilon} \frac{\beta}{\omega}=c_{d}^{2} \frac{1}{v_{p}}
\end{gathered}
$$

SO

$$
\begin{gathered}
v_{p} v_{g}=c_{d}^{2} \\
v_{g}=c_{d} \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}
\end{gathered}
$$

Example: Rectangular Waveguide

Assume TE_{z} mode

The waveguide may be filled with a lossy material.

Eigenvalue Problem:

$$
\begin{aligned}
\nabla_{t}^{2} \psi & =\lambda \psi \\
\frac{\partial \psi}{\partial n} & =\left.0\right|_{c}
\end{aligned}
$$

where

$$
\begin{aligned}
\psi(x, y) & =H_{z 0}(x, y) \\
\lambda & =-k_{c}^{2}
\end{aligned}
$$

Rectangular Waveguide (cont.)

Separation of variables:

Assume: $\quad \psi(x, y)=X(x) Y(y)$

$$
\text { so } \quad X^{\prime \prime} Y+X Y^{\prime \prime}=\lambda X Y
$$

$$
\text { or } \frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=\lambda \quad \text { or } \frac{X^{\prime \prime}}{X}=\lambda-\frac{Y^{\prime \prime}}{Y}
$$

Hence $\frac{X^{\prime \prime}}{X}=$ constant $=-k_{x}^{2}$

Rectangular Waveguide (cont.)

$$
\begin{gathered}
X(x)=A \sin \left(k_{x} x\right)+B \cos \left(k_{x} x\right) \\
X^{\prime}(x)=A k_{x} \cos \left(k_{x} x\right)-B k_{x} \sin \left(k_{x} x\right)
\end{gathered}
$$

B.c.'s: $\quad X^{\prime}(0)=0 \Rightarrow A=0$ (see note below)

$$
X^{\prime}(a)=0 \quad \Rightarrow \sin \left(k_{x} a\right)=0
$$

$$
\Rightarrow k_{x} a=m \pi
$$

Hence

$$
\Rightarrow k_{x}=\frac{m \pi}{a}
$$

$$
X(x)=\cos \left(\frac{m \pi x}{a}\right) \quad(\text { setting } B=1)
$$

Rectangular Waveguide (cont.)

Similarly, $\quad \frac{Y^{\prime \prime}}{Y}=-k_{y}^{2} \quad k_{y}=\frac{n \pi}{b}$

$$
Y(y)=\cos \left(\frac{n \pi y}{b}\right)
$$

Hence

$$
\psi(x, y)=\cos \left(\frac{m \pi x}{a}\right) \cos \left(\frac{n \pi y}{b}\right)
$$

$$
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=\lambda \quad \text { so } \quad \lambda=-k_{x}^{2}-k_{y}^{2}=-\left(\frac{m \pi}{a}\right)^{2}-\left(\frac{n \pi}{b}\right)^{2}
$$

Rectangular Waveguide (cont.)

Summary

$$
k_{c}^{2}=\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}
$$

$$
H_{z}(x, y, z)=H_{0} \cos \left(\frac{m \pi x}{a}\right) \cos \left(\frac{n \pi y}{b}\right) e^{-j k_{z} z}
$$

$$
k_{z}=\sqrt{k^{2}-\left(\frac{m \pi}{a}\right)^{2}-\left(\frac{n \pi}{b}\right)^{2}} \quad k=k_{0} \sqrt{\varepsilon_{r c}}
$$

Rectangular Waveguide (cont.)

TE 10 Mode

$$
\begin{gathered}
k_{c}=\frac{\pi}{a} \quad k_{z}=\sqrt{k^{2}-\left(\frac{\pi}{a}\right)^{2}} \\
H_{z}(x, y, z)=H_{0} \cos \left(\frac{\pi x}{a}\right) e^{-j k_{z} z}
\end{gathered}
$$

$$
\underline{E}_{t}(x, y, z)=-\underline{\hat{y}} H_{0}\left(\frac{j \omega \mu}{k^{2}-k_{z}^{2}}\right)\left(\frac{\pi}{a}\right) \sin \left(\frac{\pi x}{a}\right) e^{-j k_{z} z}
$$

$$
\underline{H}_{t}(x, y, z)=-\underline{\hat{x}}\left(\frac{1}{Z_{T E}}\right) H_{0}\left(\frac{j \omega \mu}{k^{2}-k_{z}^{2}}\right)\left(\frac{\pi}{a}\right) \sin \left(\frac{\pi x}{a}\right) e^{-j k_{z} z}
$$

$$
Z_{\text {TE }}=\frac{\omega \mu}{k_{z}}=\frac{\eta}{\sqrt{1-\left(\frac{\pi}{k a}\right)}}
$$

Rectangular Waveguide (cont.)

TE ${ }_{10}$ Mode (after simplifying)

$$
k_{c}=\frac{\pi}{a} \quad k_{z}=\sqrt{k^{2}-\left(\frac{\pi}{a}\right)^{2}}
$$

$$
H_{z}(x, y, z)=H_{0} \cos \left(\frac{\pi x}{a}\right) e^{-j k_{z} z}
$$

$$
\underline{E}_{t}(x, y, z)=-j \underline{\hat{y}} H_{0}\left(\frac{\omega \mu a}{\pi}\right) \sin \left(\frac{\pi x}{a}\right) e^{-j k_{2} z}
$$

$$
\underline{H}_{t}(x, y, z)=-j \underline{\hat{x}}\left(\frac{1}{Z_{T E}}\right) H_{0}\left(\frac{\omega \mu a}{\pi}\right) \sin \left(\frac{\pi x}{a}\right) e^{-j k_{2} z}
$$ If the material is lossless and we are above cutoff ($Z_{T E}$ is real).

Rectangular Waveguide (cont.)

TE ${ }_{10}$ Mode

$$
\begin{gathered}
H_{z 0}(x, y)=H_{0} \cos \left(\frac{\pi x}{a}\right)=c_{1} R(x, y) \\
\underline{E}_{t 0}(x, y)=\left(-j H_{0} \mu\right)\left(\frac{\omega a}{\pi}\right)\left(\hat{y} \sin \left(\frac{\pi x}{a}\right)\right)=c_{2} \underline{R}_{1}(x, y) \\
\underline{H}_{t 0}(x, y)=\left(\frac{-j H_{0} \mu}{Z_{T E}}\right)\left(\frac{\omega a}{\pi}\right)\left(\hat{\underline{x}} \sin \left(\frac{\pi x}{a}\right)\right)=c_{3} \underline{R}_{2}(x, y)
\end{gathered}
$$

We see that the results are consistent with the "Real" theorem and its corollary.

