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Polarization of Plane Waves



Polarization of Plane Waves
Consider a plane wave with both x and y components
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Polarization of Plane Waves (cont.)

Time Domain:
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Linear Polarization

At  z = 0:
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Circular Polarization

At  z = 0:
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Circular Polarization (cont.)
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Circular Polarization (cont.)

tφ ω= 

IEEE convention
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Circular Polarization (cont.)
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Note: The rotation is space is opposite to that in time. 

( ) ( )
( ) ( )

Re cos

Re cos

jkz j t
x

j jkz j t
y

a e e a t kz

be e e b t kz

ω

β ω

ω

ω β

−

−

= = −

= = − +

E

E

0 0ˆ ˆ( , , ) ( ) jkz
x yE x y z x E y E e−= + 0j

x
j

y

E ae a
E be β

= =

=

Note the minus sign!



Circular Polarization (cont.) 

RHCP

RHCP
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“Snapshot" of wave
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Circular Polarization (cont.) 
Animation of LHCP wave

http://en.wikipedia.org/wiki/Circular_polarization

(Use pptx version in full-screen mode to see motion.)
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Unit Rotation Vectors
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General Wave Representation
ˆ ˆ
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Note: Any polarization can be written as combination of RHCP and LHCP waves.

This could be useful in dealing with CP antennas.

RH LHˆE r A l A= + 
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Circularly Polarized Antennas
Method 1: The antenna is fundamentally CP.

A helical antenna for satellite 
reception is shown here.

The helical antenna is shown with a 
circular ground plane.
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Circularly Polarized Antennas (cont.)

+-Vy = -j

z
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RHCP

Method 2: Two perpendicular antennas are used, fed 90o out of phase.

Two antennas are shown here 
being fed by a common feed point.
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A more complicated version using four antennas
(omni CP)

Note: LHCP is radiated in the negative z direction.



Circularly Polarized Antennas (cont.)
Method 3: A single antenna is used, but two perpendicular modes are excited 90o out of phase.

(a) A square microstrip antenna with two perpendicular modes being excited.
(b) A square patch with two corners chopped off, fed at 45o from the edge.

(a)

(b)
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Circularly Polarized Antennas (cont.)
Method 4: Sequential rotation of antennas is used (shown for N = 4).

I = 1 ∠ 0o

I = 1 ∠ -90oI = 1 ∠ -90o

I = 1 ∠ -180o

I = 1 ∠ -270o

LP elements CP elements

The elements may be either LP or CP.
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This is an extension of method 2 when used for LP elements.

Using multiple CP elements instead of one CP element often gives better CP in practice (due to symmetry).



Pros and Cons of CP

 Alignment between transmit and receive antennas is not important.

 The reception does not depend on rotation of the electric field vector that might occur†.

 When a RHCP bounces off an object, it mainly changes to a LHCP wave. Therefore, a RHCP receive 
antenna will not be as sensitive to “multipath” signals that bound from objects. 

† Satellite transmission often uses CP because of Faraday rotation in the ionosphere.
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 A CP system is usually more complicated and expensive.

 Often, simple wire antennas (LP) are used for reception of signals in wireless communications, and 
using a CP transmitted signal will result in 50% of the transmitted power being wasted, or a 3 dB drop in 
the received signal.

Pros

Cons
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Pros and Cons of CP (cont.)

LP-LP

Effects of alignment errors

α = alignment angle error

cos2α : The received signal can vary from zero dB to -∞ dB

CP-LP

TX-RX Gain Loss

-3 dB, no matter what the alignment

LP-CP -3 dB, no matter what the alignment

CP-CP 0 dB (polarizations same) or -∞ dB (polarizations opposite), 
no matter what the alignment



Examples of Polarization

 AM Radio (0.540-1.6 MHz): linearly polarized  (vertical) (Note 1)

 FM Radio (88-108 MHz): linearly polarized  (horizontal)

 TV (VHF, 54-216 MHz; UHF, 470-698 MHz: linearly polarized  (horizontal) (some transmitters are CP)

 Cell phone antenna (about 2 GHz, depending on system): linearly polarized (direction arbitrary)

 Cell phone base-station antennas (about 2 GHz, depending on system): often linearly polarized (dual-linear 
slant 45o) (Note 2)

 DBS Satellite TV (11.7-12.5 GHz): transmits both LHCP and RHCP (frequency reuse) (Note 3)

 GPS (1.574 GHz): RHCP (Note 3)

Notes:

1) Low-frequency waves travel better along the earth when they are polarized vertically instead of horizontally.
2) Slant linear is used to switch between whichever polarization is stronger. 
3) Satellite transmission often uses CP because of Faraday rotation in the ionosphere.
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Elliptical Polarization

Includes all other cases
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Elliptical Polarization (cont.)
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Note: The rotation is not at a constant speed.
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Proof of Ellipse Property
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Consider the following quadratic form:
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Hence, this is an ellipse.

so

Proof of Ellipse Property (cont.)
Discriminant:

0,
0,
0,

∆ >
∆ =
∆ <

hyperbola
line
ellipse

From analytic geometry:

If  β = 0 or π we have ∆ = 0, and this is linear polarization.
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Rotation Property
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We now prove the rotation property:

cos cos sin siny b t b tω β ω β= −E
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Rotation Property (cont.)

Take the derivative:
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Phasor Picture
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Rule:    
The electric field vector rotates in time 
from the leading axis to the lagging axis.
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 A phase angle 0 < φ < π is a leading phase angle (leading with respect to zero degrees).
 A phase angle -π < φ < 0 is a lagging phase angle (lagging with respect to zero degrees).

π β π− < <

Assume



Phasor Picture (cont.)
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Rule:    
The electric field vector rotates in time 
from the leading axis to the lagging axis.
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 A phase angle 0 < φ < π is a leading phase angle (leading with respect to zero degrees).
 A phase angle -π < φ < 0 is a lagging phase angle (lagging with respect to zero degrees).

π β π− < <

Assume



Example

[ ]ˆˆ (1 ) (2 ) jkyE z j x j e= + + −

y

Ez

z

x
Ex

What is this wave’s polarization?
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Example (cont.) 

[ ]ˆˆ (1 ) (2 ) jkyE z j x j e= + + −

Therefore, in time, the wave rotates from the z axis to the x axis. 

Ez leads ExEz 

Ex

Im

Re
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[ ]ˆˆ(1 ) (2 ) jkyE z j x j e= + + −

y

Ez

z

x
Ex

LHEP or LHCP

Note:
2x zE E πβ≠ ≠ ± (so this is not LHCP)

Example (cont.) 

and
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[ ]ˆˆ (1 ) (2 ) jkyE z j x j e= + + −

LHEP

Example (cont.) 

32

y

Ez

z

x
Ex



Axial Ratio (AR) and Tilt Angle (τ )
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minor axis ( )dB 10AR 20log AR=
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Axial Ratio (AR) and Tilt Angle (τ )
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o o
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Axial Ratio

tan 2 tan 2 cosτ γ β=

Tilt Angle

Note:
The tilt angle τ is ambiguous by the addition of ± 90o. 

(We cannot tell the difference between the major and minor axes.)
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a
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We first calculate γ :
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( )AR cot ξ=

x
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( )tE
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A
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Axial Ratio (AR) and Tilt Angle (τ) (cont.)

Physical interpretation of the angle |ξ|
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0 45ξ< <Note :



Special Case
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Tilt Angle:

The tilt angle is zero or 90o if: / 2β π= ±
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Sometimes it is useful to know the ratio of the LHCP and RHCP wave amplitudes.

LHCP/RHCP Ratio
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LHCP/RHCP Ratio (Cont.)
Hence

LH RH

LH RH

1 /
AR

1 /
A A
A A

+
=

−

LH

RH

AR 1 AR 1
AR 1 AR 1

A
A

− +
=

+ −
or

From this we can also solve for the ratio of the CP components, if we know the axial ratio: 

LH RH

LH RH

1 /
AR

1 /
A A
A A

 +
= ±  − 

or

(We can’t tell which one is correct from knowing only the AR.)

(Use whichever sign gives AR > 0.)
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LHEP

Re-label the coordinate system:

[ ]ˆˆ (1 ) (2 ) jkyE z j x j e= + + −

x x
z y
y z

→
→
→ −

Find the axial ratio and tilt angle.

Example

Find the ratio of the CP amplitudes.
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1.249 o1 0.2 0.6 0.6324 0.6324 71.565
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radians

Example (cont.)

o/ 0.6324, 71.565b a β⇒ = =
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tan 2 tan 2 cosτ γ β=

o o45 45

LHEP
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sin 2 sin 2 sin

AR cot

0 :
0 :

ξ

ξ γ β

ξ

ξ
ξ

− ≤ ≤ +

=

=

>
<

o

o o

16.845
16.845 90

τ =

±or

o29.499ξ =
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Results

AR 1.768=

Example (cont.)
Formulas
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o16.845τ =

AR 1.768=

x

y  

( )tE

τ

Example (cont.)

Note: Plotting the ellipse as a function of time will help determine which value is correct for the tilt angle τ.
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Normalized field (a = 1):
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AR 1.768=

x

y  

( )tE

τ

Example (cont.)

We know that the polarization is LHEP, so the LHCP amplitude must dominate.

LH

RH

AR 1 AR 1
AR 1 AR 1

A
A

− +
=

+ −
or

LH

RH

0.2775 3.604
A
A

= or

Hence, we have:

LH

RH

3.604
A
A

=Hence, we have:
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