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General form of plane wave: E(X, Y, Z) :Eo /4 (X, Y, Z)

—J(kxX+kyy+kzz) | The wavenumber terms

where W(X, Y Z) =€ may be complex.

Helmholtz Eq.: V2E+ k2 E=0

Property of vector Laplacian: V* (Eow (X, Y, Z)) =E, Vzl// (X, Y, Z)

Hence EVW—I—k E,w=0

S0 Vzw—l—kzw:O



Vi +k*y =0
This gives
(k2 -k, —k2+k?)p =0

or

K2k 24k, 2=k’

X

(separation equation or wavenumber equation)



Denote

Then

and
kK-k= k2 (wavenumber equation)

Note: For complex K vectors, this is not the same as saying that the
magnitude of the K vector is equal to k.




We can also write

K — ,B — JQ Wavenumber vector

SO

The [ vector gives the direction of most rapid phase change (decrease).
The ¢ vector gives the direction of most rapid attenuation.

To illustrate, consider the phase of the plane wave:

O(X,y,2)==-f-r=—BX-B,Y—B,2
::> V(D(X1 y1z):_ﬂx2_ﬂy2_ﬂzzz_ﬁ

Similarly, V |T| (X,¥,2)=—« |T|



A general plane wave:

w (X y,z)=e ,
k=g-]a ) a
p
(7)=ReS y
§=%Exlj* /

In the most general case, all three vectors may be in different directions.



Symbol for a plane wave:

In the most general case, the k
vector may be complex. In this case
It Is not possible to actually visualize
It as vector in 3D space. The blue
arrow is still used as a symbol for
the k vector.

| <




Next, look at Maxwell’'s equations for a plane wave:

VxE=—JouH VxH=jwe E

~ 0 .0 .0
V=X—+Y—+7—
oX —oy 0z
=X(=jk)+y(=ik))+2(=jk,)
== ]k
V=-]k



Summary of Maxwell’s curl equations for a plane wave:



Gauss law (divergence) equations:

Reminder: The volume charge density is zero in the sinusoidal
steady state for a homogeneous source-free region.
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Furthermore, we have from Faraday’s law

kKxE =ouH

Dot multiply both sides with E.

M
| L
|
o

Note : E-(KXE) =0 (for any vectors K, E)
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Summary of dot products:

K-E=0
K-H=0

E-H=0

Note:
If the dot product of two vectors is zero, we can say that the vectors are
perpendicular for the case of real vectors.

For complex vectors, we need a conjugate (which we don’t have) to say
that the vectors are “orthogonal”.
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SO 1 . 1
S :E(WEO)XL[KXEO] [a),u "4 jj
1 2 * * _
o EE) M

and hence S = ﬁ‘w‘z [(Eo EB)K* - (Eo K*)EQ}
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5 = ZW\W\ (Eo-Eo )k ~(EoK)ES |

Assume E, =real vector.

(The same conclusion holds if it is a real vector times a complex constant.)

!
* — * — * _ (All of the components of the
EO ) K _( EO ) K ) _( ;ﬂ/g ) — O vector are in phase.)

Note: This conclusion also holds if Kk is real,
or is a real vector times a complex constant.

Hence

S = E
S =5 FIES K
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The power flow is:

<Y >=RedS

so <J'>= ‘W‘ ‘Eo‘ Rek
o

2

(assuming that u is real)
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Then

2
<Y > = W‘EJ

21

[N

Power flows in the direction of £

Assumption:

Either the electric field vector or the wavenumber vector is a real
vector times a complex constant.

(This assumption is true for most of the common plane waves.)
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First assume k = real vector (so
that we can visualize it) and the
medium is lossless (k is real):

The direction angles
(0, §) are defined by: K

K = f =direction of power flow

K SIn & cos ¢
KSIn@sin ¢

K COS 6@

Note:
ks +k; +k;
=k?sin” @ +k* cos® @
— k2
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From the direction angle equations we have:

cosezﬁ
K
K

tan g =

Even when (K, , K, , k;) become complex, and K is also complex, these
equations are used to define the direction angles, which may be complex.
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Definition of a homogenous (uniform) plane wave:

(6, ) are real angles

In the general lossy case (complex k):

k=xk, + Yk, + 2k,

[=<>
[
| ><>

sin@cos¢g + ysin@sing+2coso
f =real unit vector pointingin the direction of power flow
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Hence we have
=k'r
K — (kr_ Jk")ﬁ :> é

a=kK"r

The phase and attenuation vectors point in the same direction.
The amplitude and phase of the wave are both constant (uniform) in
a plane perpendicular to the direction of propagation.

Note: A simple plane wave of the form = exp(-j k z) is a special case, where ¢ =0.

Z

| Note:
A homogeneous plane
wave in a lossless medium
has no « vector:

/ ! a=k"r=0

|W
|

| N
N
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An infinite surface current
Plane wave
sheet at Z = 0 launches a
plane wave in free space.
y
/
X J (X y)

(kK x+k
Assume J Ae 1T yy)’ K,, ky c real

—S —_—

The vertical wavenumber is then given by kf + kj + kz2 = k02
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Part (a): Homogeneous plane wave
k, =0.5k, k, =0.9k,

1

k, = k2 —0.25k? —0.25k :iﬁko

We must choose Kk, =+0.707k, (outgoing wave)
Then k=k,| %(0.5)+ §(0.5) + 2(0.707) |

yA

Power flow

B=k,| X(0.5) + §(0.5) + 2(0.707) |
X a=0
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Part (b) Inhomogeneous plane wave

k =2k, K, =3k,

y

k, = k2 —4k2 — 9K

=+ jk,v12
We must choose  k, =— jk, /12 tThhee ;Ngi\:gclzoenvanescent in

Then k=k;| £(2)+9(@)+2(-i12)]

B=k[2(2)+9(3)+2(0)] a=k,| 2(+12)]
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Power flow
| a=k,| 2(V12)]
(in xy plane)
y
/%
k X
cos@=—L=— j/12 (L)=pB =k
k0 T t . IBy . 3
an g=—-=—
SO B, 2
. SO
f=—+ J(1.956) [rad]
2 $=56.31"
Note:

Another possible solution is the negative of the above angle. The inverse cosine
should be chosen so that siné is correct (to give the correct k,and k,): sin@ > 0.
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kf + kj + kz2 — k 5 Propagating waves:

k?+kZ <kg
— kzzzk(?—(kf-l—k;) ky x TKy <Kg
(sok, =real)

kO
/ \ kx
K/ Evanescent

(outside circle)

Propagating

(inside circle)

k, =—jykZ+k2 -k
kz :\/koz_kxz_kyz \/ y 0

Free space acts as a “low-pass filter.”
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Radiation from Waveguide

T PEC

— | WG

E, (X,y,0)=cos (”—Xj
a
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Fourier transform pair:

E, (k,.k,,2) = j jE (x,y,2)e T 9 dx dy

—00 —00

E, (X, y,2) = 7 )2 j j E, (k, k,,z)e "k dk

—00 —00
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E,(X,Y,2) = (271[ » Zz E, (k. k,, z)e " dk dk,
V’E, +kE, =0
il Ey +82 Ezy +82 Ey +k’E, =0
OX oy 0z
Hence

5 =

1 77 ~ - OE = | —ilkex+k, y)
2T | j(—kay—kjEy+ — +szy)e gk dk, =0
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—k’E, —k’E, +—L+Kk°E, =0

Next, define

2= K2 — k2 —K?

We then have

O°E 3
@zzy +k;E, =0
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Solution:

= - —jk,z Note: W t
Ey (kx ) ky ) Z) T Ey (kx ) ky ) O) € Outggir?g WE?VV(\eIgr:)nly.

Hence
_ 1 (re —j (kg x+ky y+k,2)
E, (XY, z)_(zﬂ)2 L joo E, (k,.k,,0) e dk, dk,
t ky +k; <kg
Power flow X % (Homogeneous)

L ;
m >y
2 2 2
ke +K; > K
(Inhomogeneous)
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Fourier transform of aperture field:

E, (k. k,,0) = _[ '[ E, (X, y,0)e X9V gy dy
_lc)072_ooa/2 X _
— j _[cos(—) g HX SN gy dy
-b/2 -al? a
al2 b/2
| cos( j e gy [ "™ dy
—-al2 -b/2
78 cos| k&
2 *2 (kb
E , (K k,,0) = : || bsinc| ——
HECIP
2 2
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Note:

Hence

E (X,y,2) =0

For E, we have

V-E=0 ﬁ> L+ ——2=0
- oy 0z

This follows from the

|:: > 1 = 1 = — mathematical form of E
( Jky ) Ey + ( sz ) EZ 0 as an inverse transform.,




Hence

In the space domain, we have

Ez (X’ y1 Z) _

2

J‘J‘E (k .k y )e—j(kxx+kyy+kzz)

—00 —00

k
(—k—y)dkxdky
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Summary (for z > 0) ;

PEC Ly
E (X,y,2)=0 = |
1 T — j(ky x+k, Yk, 2)
E, (X, z)_(zﬂ)2 L joo E, (k,.k,,0) e dk, dk,
E, (XY Z)=(271T)2 j j E, (k,,k,,0)e )(——y]dk dk,

(”ajcos(kx a) Kb
E (K, k,,0)=| 22 al (bsinc(%n




Theorem #1

E EZT] H-H (always true)

Theorem #2

If PW is homogeneous:

E 2 2‘77‘2 ‘ﬂ‘z (lossy medium)

E ‘ 772 ‘ﬂ‘z (lossless medium)

Theorem #3

If medium is lossless:

pra=0



Example

E _ S‘/e—j(kxx+ky y+k,z) _ gl/l(x, Y, Z)

Plane wave in free space

Given:
kx — Zko Note: It can be seen that
2 1,2 12 2
ky:O kX+ky+kz:k0
: and
k, = j/3k, .

Find H and compare its magnitude with that of E.

Verify theorems 1 and 3.
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SO

Ko
WL

(2,0,-jv/3)x[(0,1,0)w(x, y,2)]
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ﬂ=ni[z<2)+ 2(jV3) v

Hl=yH-H =HH +H,H =|H[ +|H,[
Hl=VH H = | NCHRCH

Hence ‘E‘

Note: The field magnitudes are not related by 77, !
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Verify: E . E = 775 ﬂ . ﬂ (Theorem #1)

E=yy(xy 2)

ﬂ=ni[z(2>+ (V3w (%, y.2)

At the origin (= 1) we have:

E-E=1

ﬂ-ﬂ=n—12[ 52+ RGBT 2@+ R(1V3)] = (4-3)

o
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Verify:

p-a=0

(Theorem #3)

k =2k,

kz - J\/éko

41
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