ECE 6340 Intermediate EM Waves

Fall 2016

Prof. David R. Jackson Dept. of ECE

Notes 17

General Plane Waves

General form of plane wave:
$$\underline{E}(x, y, z) = \underline{E}_0 \psi(x, y, z)$$

where
$$\psi(x, y, z) = e^{-j(k_x x + k_y y + k_z z)}$$

The wavenumber terms may be complex.

Helmholtz Eq.:
$$\nabla^2 E + k^2 E = 0$$

Property of vector Laplacian:
$$\nabla^2 \left(\underline{E}_0 \psi \left(x, y, z \right) \right) = \underline{E}_0 \nabla^2 \psi \left(x, y, z \right)$$

Hence
$$\underline{E}_0 \nabla^2 \psi + k^2 \underline{E}_0 \psi = 0$$

so
$$\nabla^2 \psi + k^2 \psi = 0$$

$$\nabla^2 \psi + k^2 \psi = 0$$

This gives

$$(-k_x^2 - k_y^2 - k_z^2 + k^2)\psi = 0$$

or

$$k_x^2 + k_y^2 + k_z^2 = k^2$$

(separation equation or wavenumber equation)

Denote

$$\underline{k} = \hat{\underline{x}} k_x + \hat{\underline{y}} k_y + \hat{\underline{z}} k_z$$

$$\underline{r} = \hat{\underline{x}} x + \hat{\underline{x}} y + \hat{\underline{x}} z$$

Then

$$\psi(x, y, z) = e^{-j\underline{k}\cdot\underline{r}}$$

and

$$\underline{k} \cdot \underline{k} = k^2$$
 (wavenumber equation)

Note: For complex *k* vectors, this is not the same as saying that the magnitude of the \underline{k} vector is equal to k.

We can also write

$$\underline{k} = \underline{\beta} - j\underline{\alpha}$$

Wavenumber vector

SO

$$\psi(x, y, z) = e^{-j\underline{\beta}\cdot\underline{r}} e^{-\underline{\alpha}\cdot\underline{r}}$$

The $\underline{\beta}$ vector gives the direction of most rapid phase change (decrease). The $\underline{\alpha}$ vector gives the direction of most rapid attenuation.

To illustrate, consider the phase of the plane wave:

$$\Phi(x, y, z) = -\underline{\beta} \cdot \underline{r} = -\beta_x x - \beta_y y - \beta_z z$$

$$\nabla \Phi(x, y, z) = -\beta_x \underline{\hat{x}} - \beta_y \underline{\hat{y}} - \beta_z \underline{\hat{z}} = -\underline{\beta}$$

Similarly,
$$\nabla |\Psi|(x, y, z) = -\underline{\alpha} |\Psi|$$

A general plane wave:

$$\psi(x, y, z) = e^{-j\underline{k}\cdot\underline{r}}$$

$$\underline{k} = \underline{\beta} - j\underline{\alpha}$$

$$\langle \underline{\mathscr{L}} \rangle = \operatorname{Re} \underline{S}$$

$$\underline{S} = \frac{1}{2} \underline{E} \times \underline{H}^*$$

$$\underline{S} = \frac{1}{2}\underline{E} \times \underline{H}^*$$

In the most general case, all three vectors may be in different directions.

Symbol for a plane wave:

In the most general case, the \underline{k} vector may be complex. In this case it is not possible to actually visualize it as vector in 3D space. The blue arrow is still used as a symbol for the \underline{k} vector.

Next, look at Maxwell's equations for a plane wave:

$$\nabla \times \underline{E} = -j\omega\mu\,\underline{H} \qquad \nabla \times \underline{H} = j\,\omega\,\varepsilon_c\,\underline{E}$$

$$\nabla = \frac{\hat{x}}{\partial x} + \frac{\hat{y}}{\partial y} + \frac{\hat{z}}{\partial z} + \frac{\hat{z}}{\partial z}$$

$$= \frac{\hat{x}}{\partial x} (-jk_x) + \frac{\hat{y}}{\partial y} (-jk_y) + \frac{\hat{z}}{\partial z} (-jk_z)$$

$$= -jk$$

$$\nabla = -j\,\underline{k}$$

Hence

$$-j\underline{k}\times\underline{E} = -j\omega\mu\underline{H} \qquad -j\underline{k}\times\underline{H} = j\omega\varepsilon_c\underline{E}$$

Summary of Maxwell's curl equations for a plane wave:

$$\underline{k} \times \underline{E} = \omega \mu \underline{H}$$

$$\underline{k} \times \underline{H} = -\omega \varepsilon_c \, \underline{E}$$

Gauss law (divergence) equations:

$$\nabla \cdot \underline{D} = \rho_{v} \qquad \nabla \cdot \underline{B} = 0$$

$$-j\underline{k} \cdot (\varepsilon \underline{E}) = 0 \qquad -j\underline{k} \cdot (\mu \underline{H}) = 0$$

$$\underline{k} \cdot \underline{E} = 0$$

$$\underline{k} \cdot \underline{H} = 0$$

Reminder: The volume charge density is zero in the sinusoidal steady state for a homogeneous source-free region.

Furthermore, we have from Faraday's law

$$\underline{k} \times \underline{E} = \omega \mu \underline{H}$$

Dot multiply both sides with \underline{E} .

$$\underline{E} \cdot \underline{H} = 0$$

Note: $\underline{E} \cdot (\underline{k} \times \underline{E}) = 0$ (for any vectors $\underline{k}, \underline{E}$)

Summary of dot products:

$$\underline{k} \cdot \underline{E} = 0$$

$$\underline{k} \cdot \underline{H} = 0$$

$$\underline{E} \cdot \underline{H} = 0$$

Note:

If the dot product of two vectors is zero, we can say that the vectors are perpendicular for the case of <u>real</u> vectors.

For <u>complex</u> vectors, we need a conjugate (which we don't have) to say that the vectors are "orthogonal".

Power Flow

$$\underline{S} = \frac{1}{2} \underline{E} \times \underline{H}^*$$

$$\underline{H} = -\frac{1}{j\omega\mu} \nabla \times \underline{E}$$

$$= -\frac{1}{j\omega\mu} (-j\underline{k} \times \underline{E})$$

$$= \frac{1}{\omega\mu} \underline{k} \times \underline{E}$$

$$= \frac{1}{\omega\mu} \psi (\underline{k} \times \underline{E}_0)$$

$$\underline{S} = \frac{1}{2} (\psi \underline{E}_0) \times \left[\left[\underline{k} \times \underline{E}_0 \right]^* \left(\frac{1}{\omega \mu} \psi^* \right) \right]$$

$$= \frac{1}{2\omega \mu} |\psi|^2 \underline{E}_0 \times \left(\underline{k}^* \times \underline{E}_0^* \right)$$

Note: μ is assumed to be real here.

Use
$$\underline{A} \times (\underline{B} \times \underline{C}) = \underline{B} (\underline{A} \cdot \underline{C}) - \underline{C} (\underline{A} \cdot \underline{B})$$

so that
$$\underline{E}_0 \times \left(\underline{k}^* \times \underline{E}_0^*\right) = \left(\underline{E}_0 \cdot \underline{E}_0^*\right) \underline{k}^* - \left(\underline{E}_0 \cdot \underline{k}^*\right) \underline{E}_0^*$$

and hence
$$\underline{S} = \frac{1}{2\omega\mu} |\psi|^2 \left[\left(\underline{E}_0 \cdot \underline{E}_0^* \right) \underline{k}^* - \left(\underline{E}_0 \cdot \underline{k}^* \right) \underline{E}_0^* \right]$$

$$\underline{S} = \frac{1}{2\omega\mu} |\psi|^2 \left[\left(\underline{E}_0 \cdot \underline{E}_0^* \right) \underline{k}^* - \left(\underline{E}_0 \cdot \underline{k}^* \right) \underline{E}_0^* \right]$$

Assume \underline{E}_0 = real vector.

(The same conclusion holds if it is a real vector times a complex constant.)

$$\underline{E}_0 \cdot \underline{k}^* = \left(\underline{E}_0^* \cdot \underline{k}\right)^* = \left(\underline{E}_0 \cdot \underline{k}\right)^* = 0 \qquad \text{(All of the components of the vector are in phase.)}$$

Note: This conclusion also holds if \underline{k} is real, or is a real vector times a complex constant.

Hence
$$\underline{S} = \frac{1}{2\omega\mu} |\psi|^2 |\underline{E}_0|^2 \,\underline{k}^*$$

$$\underline{S} = \frac{1}{2\omega\mu} |\psi|^2 |\underline{E}_0|^2 \underline{k}^*$$

The power flow is: $\langle \mathcal{I} \rangle = \text{Re } S$

so
$$\langle \underline{\mathscr{S}} \rangle = \frac{1}{2\omega\mu} |\psi|^2 |\underline{E}_0|^2 \operatorname{Re}\underline{k}$$

(assuming that μ is real)

Recall:
$$\underline{k} = \underline{\beta} - j\underline{\alpha}$$

Then

$$\langle \underline{\mathscr{S}} \rangle = \left[\frac{|\psi|^2}{2\omega\mu} |\underline{E}_0|^2 \right] \underline{\beta}$$

Power flows in the direction of β .

Assumption:

Either the electric field vector or the wavenumber vector is a real vector times a complex constant.

(This assumption is true for most of the common plane waves.)

Direction Angles

Z.

First assume \underline{k} = real vector (so that we can visualize it) and the medium is lossless (k is real):

The direction angles (θ, ϕ) are <u>defined</u> by:

$$k_{x} = k \sin \theta \cos \phi$$

$$k_{y} = k \sin \theta \sin \phi$$

$$k_{z} = k \cos \theta$$

Note:

$$k_x^2 + k_y^2 + k_z^2$$

$$= k^2 \sin^2 \theta + k^2 \cos^2 \theta$$

$$= k^2$$

Direction Angles (cont.)

From the direction angle equations we have:

$$\cos\theta = \frac{k_z}{k}$$

$$\tan \phi = \frac{k_y}{k_x}$$

Even when (k_x, k_y, k_z) become complex, and k is also complex, these equations are used to <u>define</u> the direction angles, which may be complex.

Homogeneous Plane Wave

Definition of a homogenous (uniform) plane wave:

 (θ, ϕ) are real angles

In the general lossy case (complex k):

$$\underline{k} = \underline{\hat{x}} k_x + \underline{\hat{y}} k_y + \underline{\hat{z}} k_z$$

$$= k \left[\underline{\hat{x}} \sin \theta \cos \phi + \underline{\hat{y}} \sin \theta \sin \phi + \underline{\hat{z}} \cos \theta \right]$$

$$= k \underline{\hat{r}}$$

where

$$\underline{\hat{r}} \equiv \underline{\hat{x}} \sin \theta \cos \phi + \underline{\hat{y}} \sin \theta \sin \phi + \underline{\hat{z}} \cos \theta$$

 \hat{r} = real unit vector pointing in the direction of power flow

Homogeneous Plane Wave (cont.)

Hence we have

$$\underline{k} = (k' - jk'')\underline{\hat{r}} \qquad \Longrightarrow \qquad \underline{\underline{\beta}} = k'\underline{\hat{r}}$$

$$\underline{\alpha} = k''\underline{\hat{r}}$$

The phase and attenuation vectors point in the same direction.

The amplitude and phase of the wave are both constant (uniform) in a plane perpendicular to the direction of propagation.

Note: A simple plane wave of the form $\psi = \exp(-j k z)$ is a special case, where $\theta = 0$.

Note:

A homogeneous plane wave in a <u>lossless</u> medium has no α vector:

$$\underline{\alpha} = k'' \hat{\underline{r}} = \underline{0}$$

Infinite Current Sheet

An infinite surface current sheet at z = 0 launches a plane wave in free space.

Assume
$$\underline{J}_s = \underline{A} e^{-j(k_x x + k_y y)}, \quad k_x, k_y \in \text{real}$$

The vertical wavenumber is then given by

$$k_x^2 + k_y^2 + k_z^2 = k_0^2$$

Infinite Current Sheet (cont.)

Part (a): Homogeneous plane wave

$$k_x = 0.5 k_0$$
 $k_y = 0.5 k_0$

$$k_z = \sqrt{k_0^2 - 0.25 k_0^2 - 0.25 k_0^2} = \pm \frac{1}{\sqrt{2}} k_0$$

We must choose $k_z = +0.707 k_0$ (outgoing wave)

Then
$$\underline{k} = k_0 \left[\hat{\underline{x}}(0.5) + \hat{\underline{y}}(0.5) + \hat{\underline{z}}(0.707) \right]$$

Infinite Current Sheet (cont.)

Part (b) Inhomogeneous plane wave

$$k_x = 2k_0 \quad k_y = 3k_0$$

$$k_z = \sqrt{k_0^2 - 4k_0^2 - 9k_0^2}$$
$$= \pm j k_0 \sqrt{12}$$

We must choose
$$k_z = -j k_0 \sqrt{12}$$

The wave is <u>evanescent</u> in the z direction.

Then
$$\underline{k} = k_0 \left[\hat{\underline{x}}(2) + \hat{\underline{y}}(3) + \hat{\underline{z}}(-j\sqrt{12}) \right]$$

$$\underline{\beta} = k_0 \left[\underline{\hat{x}}(2) + \underline{\hat{y}}(3) + \underline{\hat{z}}(0) \right] \qquad \underline{\alpha} = k_0 \left[\underline{\hat{z}}(\sqrt{12}) \right]$$

Infinite Current Sheet (cont.)

$$\theta = \frac{\pi}{2} + j(1.956)$$
 [rad]

 $\phi = 56.31^{\circ}$

Note:

Another possible solution is the negative of the above angle. The inverse cosine should be chosen so that $\sin \theta$ is correct (to give the correct k_x and k_y): $\sin \theta > 0$.

Propagation Circle

Free space acts as a "low-pass filter."

Radiation from Waveguide

$$E_{y}(x, y, 0) = \cos\left(\frac{\pi x}{a}\right)$$

Fourier transform pair:

$$\tilde{E}_{y}(k_{x},k_{y},z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E_{y}(x,y,z) e^{+j(k_{x}x+k_{y}y)} dx dy$$

$$E_{y}(x, y, z) = \frac{1}{(2\pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{E}_{y}(k_{x}, k_{y}, z) e^{-j(k_{x}x + k_{y}y)} dk_{x} dk_{y}$$

$$E_{y}(x, y, z) = \frac{1}{(2\pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{E}_{y}(k_{x}, k_{y}, z) e^{-j(k_{x}x + k_{y}y)} dk_{x} dk_{y}$$

$$\nabla^2 E_{v} + k^2 E_{v} = 0$$

$$\frac{\partial^2 E_y}{\partial x^2} + \frac{\partial^2 E_y}{\partial y^2} + \frac{\partial^2 E_y}{\partial z^2} + k^2 E_y = 0$$

Hence

$$\frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(-k_x^2 \tilde{E}_y - k_y^2 \tilde{E}_y + \frac{\partial^2 \tilde{E}_y}{\partial z^2} + k^2 \tilde{E}_y \right) e^{-j(k_x x + k_y y)} dk_x dk_y = 0$$

Hence

$$-k_x^2 \tilde{E}_y - k_y^2 \tilde{E}_y + \frac{\partial^2 E_y}{\partial z^2} + k^2 \tilde{E}_y = 0$$

Next, define

$$k_z^2 \equiv k^2 - k_x^2 - k_y^2$$

We then have

$$\frac{\partial^2 \tilde{E}_y}{\partial z^2} + k_z^2 \tilde{E}_y = 0$$

Solution:

$$\tilde{E}_{y}(k_{x},k_{y},z) = \tilde{E}_{y}(k_{x},k_{y},0)e^{-jk_{z}z}$$

Note: We want outgoing waves only.

Hence

$$E_{y}(x, y, z) = \frac{1}{(2\pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{E}_{y}(k_{x}, k_{y}, 0) e^{-j(k_{x}x + k_{y}y + k_{z}z)} dk_{x} dk_{y}$$

Fourier transform of aperture field:

$$\tilde{E}_{y}(k_{x}, k_{y}, 0) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E_{y}(x, y, 0) e^{+j(k_{x}x + k_{y}y)} dx dy
= \int_{-b/2}^{b/2} \int_{-a/2}^{a/2} \cos\left(\frac{\pi x}{a}\right) e^{+j(k_{x}x + k_{y}y)} dx dy
= \int_{-a/2}^{a/2} \cos\left(\frac{\pi x}{a}\right) e^{+j(k_{x}x)} dx \int_{-b/2}^{b/2} e^{+j(k_{y}y)} dy$$

$$\tilde{E}_{y}(k_{x}, k_{y}, 0) = \left(\frac{\left(\frac{\pi a}{2}\right)\cos\left(k_{x}\frac{a}{2}\right)}{\left(\frac{\pi}{2}\right)^{2} - \left(\frac{k_{x}a}{2}\right)^{2}}\right) \left(b\operatorname{sinc}\left(\frac{k_{y}b}{2}\right)\right)$$

Note:

$$\tilde{E}_{x}(k_{x},k_{y},z) = \tilde{E}_{x}(k_{x},k_{y},0)e^{-jk_{z}z} = 0$$

Hence

$$E_{x}(x,y,z)=0$$

For E_{τ} we have

$$\nabla \cdot \underline{E} = 0 \qquad \qquad \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = 0$$

$$(-jk_y)\tilde{E}_y + (-jk_z)\tilde{E}_z = 0$$

This follows from the mathematical form of E_y as an inverse transform.

Hence

$$\tilde{E}_z = \tilde{E}_y \left(-\frac{k_y}{k_z} \right)$$

In the space domain, we have

$$E_{z}(x, y, z) = \frac{1}{(2\pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{E}_{y}(k_{x}, k_{y}, 0) e^{-j(k_{x}x + k_{y}y + k_{z}z)} \left(-\frac{k_{y}}{k_{z}}\right) dk_{x} dk_{y}$$

Summary (for z > 0)

$$E_{x}(x, y, z) = 0$$

$$\uparrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow$$

$$E_{x}(x, y, z) = 0$$

$$E_{y}(x, y, z) = \frac{1}{(2\pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{E}_{y}(k_{x}, k_{y}, 0) e^{-j(k_{x}x + k_{y}y + k_{z}z)} dk_{x} dk_{y}$$

$$E_{z}(x, y, z) = \frac{1}{(2\pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{E}_{y}(k_{x}, k_{y}, 0) e^{-j(k_{x}x + k_{y}y + k_{z}z)} \left(-\frac{k_{y}}{k_{z}}\right) dk_{x} dk_{y}$$

$$\tilde{E}_{y}(k_{x}, k_{y}, 0) = \left(\frac{\left(\frac{\pi a}{2}\right) \cos\left(k_{x} \frac{a}{2}\right)}{\left(\frac{\pi}{2}\right)^{2} - \left(\frac{k_{x} a}{2}\right)^{2}}\right) \left(b \operatorname{sinc}\left(\frac{k_{y} b}{2}\right)\right)$$

Some Plane-Wave "η" Theorems

Theorem #1

$$\underline{E} \cdot \underline{E} = \eta^2 \, \underline{H} \cdot \underline{H}$$
 (always true)

Theorem #2

If PW is homogeneous:

$$\left|\underline{E}\right|^2 = \left|\eta\right|^2 \left|\underline{H}\right|^2$$
 (lossy medium) $\left|\underline{E}\right|^2 = \eta^2 \left|\underline{H}\right|^2$ (lossless medium)

Theorem #3

If medium is lossless:

$$\underline{\beta} \cdot \underline{\alpha} = 0$$

Example

Example

$$\underline{E} = \underline{\hat{y}} e^{-j(k_x x + k_y y + k_z z)} = \underline{\hat{y}} \psi(x, y, z)$$

Plane wave in free space

Given:

$$k_x = 2k_0$$

$$k_y = 0$$

$$k_z = -j\sqrt{3} k_0$$

Note: It can be seen that

$$k_x^2 + k_y^2 + k_z^2 = k_0^2$$

and

$$\underline{k} \cdot \underline{E} = 0$$

Find \underline{H} and compare its magnitude with that of \underline{E} .

Verify theorems 1 and 3.

$$\nabla \times \underline{E} = -j \omega \mu_0 \underline{H}$$

SO

$$-j\underline{k}\times\underline{E} = -j\omega\mu_0\underline{H}$$

$$\underline{H} = \frac{1}{\omega \mu_0} \underline{k} \times \underline{E}$$

$$= \frac{k_0}{\omega \mu_0} (2, 0, -j\sqrt{3}) \times [(0, 1, 0) \psi(x, y, z)]$$

$$\underline{H} = \frac{1}{\eta_0} \left[\hat{\underline{z}}(2) + \hat{\underline{x}}(j\sqrt{3}) \right] \psi$$

$$|\underline{H}| = \sqrt{\underline{H} \cdot \underline{H}^*} = \sqrt{H_x H_x^* + H_z H_z^*} = \sqrt{|H_x|^2 + |H_z|^2}$$

$$|\underline{H}| = \frac{1}{\eta_0} \sqrt{|2|^2 + |j\sqrt{3}|^2} |\psi| = \frac{\sqrt{7}}{\eta_0} |\psi|$$

Hence

$$\frac{|\underline{E}|}{|\underline{H}|} = \frac{\eta_0}{\sqrt{7}}$$

Note: The field magnitudes are not related by η_0 !

Verify:
$$\underline{E} \cdot \underline{E} = \eta_0^2 \underline{H} \cdot \underline{H}$$
 (Theorem #1)

$$\underline{E} = \hat{\underline{y}}\psi(x, y, z)$$

$$\underline{H} = \frac{1}{\eta_0} [\hat{\underline{z}}(2) + \hat{\underline{x}}(j\sqrt{3})]\psi(x, y, z)$$

At the origin ($\psi = 1$) we have:

$$\underline{E} \cdot \underline{E} = 1$$

$$\underline{H} \cdot \underline{H} = \frac{1}{\eta_0^2} [\hat{z}(2) + \hat{x}(j\sqrt{3})] \cdot [\hat{z}(2) + \hat{x}(j\sqrt{3})] = \frac{1}{\eta_0^2} (4 - 3) = \frac{1}{\eta_0^2}$$

Verify:
$$\beta \cdot \underline{\alpha} = 0$$

(Theorem #3)

$$\underline{\beta} = \operatorname{Re}(\underline{k}) = \underline{\hat{x}}(2k_0)$$

$$\underline{\alpha} = -\operatorname{Im}\left(\underline{k}\right) = \underline{\hat{z}}\left(\sqrt{3}k_0\right)$$

Hence

$$\underline{\beta} \cdot \underline{\alpha} = 0$$

$$k_x = 2k_0$$

$$k_{v} = 0$$

$$k_z = -j\sqrt{3} k_0$$