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Uniqueness Theorem 

 Shows what B.C.’s are necessary to uniquely determine fields. 
 Justifies image theory and the equivalence principle. 

Theorem 

Assume: 
 

(1)  Sources (J 
i , M 

i) are specified in V. 
(2)  Et

   or  Ht  is specified on S†.  
(3)  Region V  is slightly lossy. 
 

Then (E , H) is unique inside V. 

iM iJ
S  

2 

V  

†It is allowed to specify Et on one part and Ht on the other part. 



Uniqueness Theorem (cont.) 

Proof 

Assume different two solutions that have the same sources and 
tangential field (Et

  or Ht) on S: 

Subtract: 

a a i

b b i

E j H M

E j H M

ωµ

ωµ

∇× = − −

∇× = − −

( ) ( )a b a bE E j H Hωµ∇× − = − −

(Ea , Ha) and (Eb ,Hb)  
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Let 
a b

a b

E E E

H H H

∆ ≡ −

∆ ≡ −

Then 

( ) ( )E j Hωµ∇× ∆ = − ∆

Similarly (from Ampere's law), 

Uniqueness Theorem (cont.) 

Note that these are source-free equations. 

( ) ( )cH j Eωε∇× ∆ = ∆

4 



Now use the complex Poynting theorem: 

( )

( )

2 2

2 2 * *

1 ˆ
2

1 12
4 4

1 1 12
4 4 2

V

i i

V V

E H n dS

H E dV

j H E dV E J H M dV

ω µ ε

ω µ ε

∗× ⋅

 ′′ ′′+ + 
 

 ′+ − = − ⋅ + ⋅ 
 

∫

∫

∫ ∫



E E H H→ ∆ → ∆

0 0i i i iJ J M M→ ∆ = → ∆ =

Uniqueness Theorem (cont.) 

with 
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( )
2 2

2 2

1 ˆ
2

1 12
4 4

1 12 0
4 4

V

V

E H n dS

H E dV

j H E dV

ω µ ε

ω µ ε

∗∆ × ∆ ⋅

 ′′ ′′+ ∆ + ∆ 
 

 ′ ′+ ∆ − ∆ = 
 

∫

∫

∫



Next, examine the first term.  

Uniqueness Theorem (cont.) 

Hence, we have 
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On S, 

* *ˆ ˆ( ) ( ) ( ) ( ) 0t tE H n E H n∆ × ∆ ⋅ = ∆ × ∆ ⋅ =

This follows since 

0tE∆ = 0tH∆ =or on S. 

Uniqueness Theorem (cont.) 
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Hence 

2 2

2 2

1 12
4 4

1 12 0
4 4

V

V

H E dV

j H E dV

ω µ ε

ω µ ε

 ′′ ′′+ ∆ + ∆ 
 

 ′ ′+ ∆ − ∆ = 
 

∫

∫

Set the real and imaginary parts to zero:  

2 2

2 2

1 1 0
4 4

1 1 0
4 4

V

V

H E dV

H E dV

µ ε

µ ε

 ′′ ′′∆ + ∆ = 
 

 ′ ′∆ − ∆ = 
 

∫

∫

Uniqueness Theorem (cont.) 
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Examine the real part: 

Assume 

( )2 2 0
V

H E dVµ ε′′ ′′∆ + ∆ =∫

0
0

V
V

ε
µ

′′ >
′′ >

in

in
or 

Then 

0
0

E V
H V

∆ =
∆ =

in

in

Uniqueness Theorem (cont.) 

or 
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In either case, from Maxwell’s equations we have that 
both must be zero: 

and 
0 in
0 in

E V
H V

∆ =
∆ =

Hence 
a b

a b

E E

H H

=

=

Uniqueness Theorem (cont.) 
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Two regions with an interface: 

Et
  or Ht is specified on S  

Et
  and  Ht continuous on 

The interface 

Generalization 

Note:  
If there are surface currents on the 

interface, then we require the 
appropriate boundary conditions on 

the interface to be satisfied. 

1ε

2ε
Sources 

2 

1 
ε1 

ε2 
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1 

2 

ẑ
1ε

2ε

Note that Dn
  and  Bn are automatically continuous at the boundary  

if the tangential fields are. 

1 y x
z

H j D
H HD

j x y

ω

ω

∇× =

∂ ∂
= − ∂ ∂ 

Generalization (cont.) 

For example:  
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Example 

Both satisfy the Helmholtz equation for Az for the given source. 

2 2 ( )z zA k A rµ δ∇ + = −

4 4

jkr jkr

z z
e eA A

r r
µ µ
π π

− +
+ −   = =   

   

y 

x 

l 

Il =1 

z 

Infinitesimal dipole: 

Two possible solutions: 
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Example (cont.) 
We impose a B.C. at infinity for Et or Ht. 

Assumption: The correct solution goes to zero at infinity. 

14 

y 

x 

l 

Il =1 

z 

S = S∞ 

0 ontE S∞=

V 



Example (cont.) 

Assume , 0k k jk k′ ′′ ′′= − >

0
4

as
4

k r

z

k r

z

eA
r

eA r
r

µ
π
µ
π

′′−
+

′′+
−

 = → 
 

 = → ∞ → ∞ 
 

The correct choice is then 
4

jkr

z
eA

r
µ
π

−
+  =  

 

We then have 

Both solutions tend to zero at infinity if there is no loss 
(we cannot tell which one is correct). 

The solution should now be unique. 
(The requirements of the uniqueness 
theorem are satisfied, which includes 

having a small amount of loss.) 

15 



Current source tangent to (and just outside) PEC body. 

0 oni
t cE J S  = 

Surround Sc
 by  S∞ : 

iJ
  PEC 

Sc  

S∞  

iJ   PEC 
Sc  

V  

Example 

cS S S∞= 
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0 ont cE S S S∞= = 

The sources inside V are specified (no sources in V ). 

Hence, (E, H) are unique inside V. 

Example (cont.) 
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S∞  

iJ   PEC 
Sc  

V  

( ) ( ), 0,0 VE H = inside 

This satisfies the source condition and the B.C.s, so it must be the correct solution. 

√ 

√ 



Conclusion:  

iJ   PEC 
S  

No fields 

An electric current tangent to a PEC body does not radiate. 

Example (cont.) 
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Similarly, we can examine a tangential magnetic current on a PMC body.  

iM   PMC 
S  

No fields 

A magnetic current tangent to a PMC body does not radiate. 

Example (cont.) 
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Sommerfeld Radiation Condition 

Then ψ  is unique if: 

This is a more “powerful” boundary condition at infinity that does not 
require the medium to be lossy. 

Let , , , , , , .x y z x y zA A A E E Eψ = etc

( )2 2k S rψ ψ∇ + =

(1) Lim ( ) 0

(2) Lim 0

r

r

r

r jk
r

ψ

ψ ψ

→∞

→∞

=

∂ + = ∂ 

Assume that 
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Example 

jkre
r

ψ ψ
−

+= =

2

1 1

1

0

jkr jkr
jkr

jkr

e er jk r jk jk r e
r r r r r

e
r

r

ψ ψ
− −

−

−

  ∂     + = − − + = −      ∂       

= −

→ → ∞as

Use 

21 

The function ψ+ satisfies the Sommerfeld radiation condition at infinity. 



Example (cont.) 

jkre
r

ψ ψ
+

−= =

Now use  

1

12

0

jkr jkr

jkr jkr

e er jk r jk jk
r r r r

jke e
r

r

ψ ψ
+ +

+ +

  ∂   + = + − +    ∂      

= −

→ → ∞as

22 

The function ψ- does not satisfy the Sommerfeld radiation condition at infinity. 
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