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Basic idea:

We can replace the actual sources in a region by equivalent sources
at the boundary of a closed surface.

= Keep original fields E , H outside S.

= Put zero fields (and no sources) inside S.
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Note: (E2, H3) and (E?, HY) both satisfy Maxwell’s equations.



% The B.C.’s on S are violated.

% Introduce equivalent sources on the boundary to make B.C.’s valid.

n
-/ Original fields
7 >
’ N
/ \
&)/ |
/ e
A a b
® V& wea(rd)
|
| l
!
1 Zero field € A~ a b
\ ero fields f M. M::_DX(E — )
\ /
\ /
\ ’
N\ /



Zero
fields

Zero
sources
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Outside S, these sources radiate the
same fields as the original antenna,

and produce zero fields inside S.

This is justified by the unigueness
theorem:

Maxwell's equations are satisfied along
with boundary conditions at the interface.



Note about materials:

If there are zero fields throughout a region, it doesn’t matter what
material is placed there (or removed).

This object can be added
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We put zero fields and
sources inside of S, and
remove the PEC object.

Equivalent Sources:

Source I



Original problem:

Source | ))) J.
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Equivalent problem: /~~--~v (E,H)
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Conclusion: The conductor can be removed.




Integral equation for the unknown current

r=~_7" (Elﬂ)
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/ N /! Note:
i Ne=7 The bracket notation means
S |
Et + Et = Q “field due to a source”.

_ _E! “Electric Field Integral Equation”
E[d.]=-E (EFIE)

This integral equation has to be solved numerically.
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Source | )))

E' = incident field

E’ = scattered field

Note:
The body is assumed to be
homogeneous.
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Source I

Replace body by free space
(The material doesn’t matter in the zero-field region.)
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Original problem:

Free-space problem:
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NO sources or
fields outside S

ise_:(—ﬁ)x(Ha—O):—ﬁxH_:—ﬁ><ﬂ+:—ise+ Ji=-J%
E+

M =—(-A)x(E*-0)=fxE =AxE'=-M M =-M¢'



Interior Equivalence (cont.)

When we calculate the fields from these currents, we let
them radiate in an infinite dielectric medium.
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Summary for Interior

Original problem:

I
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The “+” means calculate the The “~" means calculate the
fields just outside the surface, fields just inside the surface,
radiated by the sources in assuming an infinite
free space. T dielectric region.
S
Recall:
Boundar E IS M |+E =E |JS ,ME e- _ _ qe+
- y —t | =s —S —t —t | =s —S is = is
conditions: T e e i el e . o
Hi[ I8 M |+ H =H [ 3 M¢ | M: =-M;
- e+ e+ = e+ e+ | i
Et |:i3 ) MS + Et [ig ) I\_/l S ] - _Et “PMCHWT”

Hence:

s s 1 Ls

H;{ [i?, M e*} +H, [J ®* M e+] _ _ﬂi Integral Equation*

* Poggio-Miller-Chang-Harrington-Wu-Tsai 17



Sources,
structures,
etc.

(EH)
Region of interest
(Z>0)

_ Z

Equivalence surface S (closed at infinity in the z < 0 region)

Equivalent sources: (E,ﬂ)
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Fields in a Half Space (cont.)

Put PEC in zero-field region:

e (E.H)

[ Z

fme

The electric surface current
on the PEC does not radiate.

Hence, we have: (E.H)

Note: The fields are only correct for z > 0.
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|
Now use image theory: : (E,ﬂ)

|

(&0) 140) :
1 M,

Incorrect fields : Correct fields
I e
M =2M:
M, =-2ZxE

Note: The fields are correct for Z > 0.

This is useful whenever the electric field on the z = 0 plane is known.
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Sources
+ objects
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Fields in a Half Space (cont.)

Alternative (better when H is known on the interface):

T e The magnetic current does not radiate on
el PMC, and is therefore not included.

Image theory: (E.H)

(€01 1)

I Correct fields

Incorrect fields

J,=2J¢=22xH
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Example: Radiation from Waveguide
y

E(x,y,0)=YE, cos(%xj

T — 2z
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Step #1
Apply equivalence principle

The feeding waveguide was removed from
the dead region that was created, and then
an infinite PEC plane was introduced.

Step #2
Apply image theory

Image theory is applied to remove the
ground plane and double the
magnetic surface current.
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a
b3

QX — Z

X

I

I

! I\_/IS:2XEOCOS(7T—XJ

| a

I

1IQ

I® — Z

1R

I

I

: Note:

An alternative way of getting to step
1 is to apply B.C.s for M, on a PEC.
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A three-dimensional view
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Step #3
Aoply duality Z Use the theory of Notes 22 to find
the far field from this rectangular
strip of electric surface current.

Solve for the far field of this problem first.

(This is the “A” prob_lem in the notation of the A three-dimensional view
duality notes.)

Then use:
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The vector array factor for the “case A” problem is then

a b
2(9,¢)=IjZXEOCOS(%Xje(k“k ) dx'dy’

-a—b
K, =K,sIndcos¢
k, =k,sinésing¢

We then have, for case A, that the far field is
- —joA (r.6,9)
Y7
A(r,0,0) ~—w(r)a(d,
A(T.0.6)~ 2y (1)a(6.9)
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For the original waveguide-fed aperture problem we then have

TTX ) ik +kyY') g0
f(6.¢)= _HZXE cos( aje dx'dy’

—-a-b
kK, =K,sIndcos¢
K, =k,singsing

The far field then
H ~—JoE (r,0,9)
E
F~| =2 r)f (o,
E-{ 2 (r)1(0.0

— 1y (rxH) y(r)=

e—jkr
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Performing the integration, we have

(%ajcos(kx %) < b
f(6,4)=2XE, SRV (bsinc[%n
2) (%)
K, =K,sIndcos¢
K, =k,singsing

We also have

N N

0(0-(21,))+4(4-(21,))
f (é(cochos¢) +é(—sin ¢))

f(6.9)
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The far field of the waveguide-fed aperture is then:
H(r,0,¢) ~— JoE(r,0,¢)
E~-n,(FxH)

e—jkr

w(r)f(0,9)  w(r)=

;J

F -~ (E
f.(0,¢)= (é(cos&cos¢)+é(—sin ¢)) f.(0,9)

a

— cos(kxij _k <i
f,(0.0) = 2E, u 2 (b(ﬁ]j =Ko sinfcosg

(gj _(kxa) 2 k, =K,singsin ¢
2 2
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The final result is then:

A ) 1

— jkr (j COS(kX a) b
Ee(r,9,¢)~—ja)ﬂ0(ije (—sing)2E, 2 s 2 (bsinc(%n

42

2
. s e X 5 (kDb
E (r,0,0) ~ 0 cos@cosd)2E bsinc| —2—
(1,0.9) 160770(47[) —(cosfcosg) 26, k [ [ZD

where
k, =K,sindcos¢
k, =kysin@sing
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A radiating electric current can be replaced by a
magnetic current, and vice versa.

(Ei, H,) (E;.H,)

We wish to have the same set of radiated fields.

P. E. Mayes, “The equivalence of electric and magnetic sources”,
IEEE Trans. Antennas Propag., vol. 6, pp. 295-296, 1958.
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Set 1 (electric current source):

nglz_ ja)ﬂoﬂl
VxH,=J"+ jog,E,

Hence
Vx(VxE,) =- jou,(VxH,)
- ja):uo (ll + jC()EOEl)

Therefore, we have

VX(V>< El)_kozgl - ja)lLlOli
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Set 2 (magnetic current source):

VxE,=— jou,H,—M'

V x Ij2 = Jws,E,

Therefore, we have

VX(ngz)_kozgz

:—V)(I\_/Ii
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Compare:

Vx(VxE )=k E == joud
Vx(VxE,)-k2E, ==V xM’

Set | |
— Jopyd'=-VxM'

Hence

J'=-
Jor

VxM' =)
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Next, examine the difference in the two Faraday laws:
V x El == jw:uoljl
VxE,=- ja):uoljz - I\_/Ii

SO

ng/_{):—woul—(—wouz—m‘)

This gives us

M i

H, —H, =—
Jory

Hence, the two electric fields are equal everywhere, but the
magnetic fields are only the same outside the source region.
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Volume Equivalence Principle (Cont.)

, Summary :
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Volume Equivalence Principle (Cont.)
Apply duality on the two curl equations to get two new equations:
Vx(VxH,)-kH, =— jos,M'
Vx(VxH,)-kiH, =VxJ'

z Z
(E11 Ijl)
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Vx(Vx Ijl)—kgﬂl =— jog,M'
Vx(VxH,)-kiH, =VxJ'

Hence

1
Joe,

M =

vxJ' =)

Similarly, from duality we have
VxH,=]Jos,E,
V x Ijz = ja)goEz +li

::> VX(%):ja)go(El_Ez)_li

H, =H,
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Volume Equivalence Principle (Cont.)

Summary
Z yA
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