ECE 6340 Intermediate EM Waves

Fall 2016

Prof. David R. Jackson
Dept. of ECE

Notes 27

Reciprocity Theorem

Consider two sets of sources, radiating in the same environment.

$$
\begin{gathered}
\uparrow \uparrow \\
\underline{J}^{i a}, \underline{M}^{i a}
\end{gathered}
$$

$$
\left(\underline{E}^{a}, \underline{H}^{a}\right)
$$

$$
\left(\underline{E}^{b}, \underline{H}^{b}\right)
$$

Note: The same "body" (dielectric or PEC) exists in both cases.

Reciprocity Theorem (cont.)

$$
\begin{aligned}
\nabla \times \underline{H}^{a} & =\underline{J}^{i a}+j \omega \varepsilon_{c} \underline{E}^{a} \\
\underline{E}^{b} \cdot\left(\nabla \times \underline{H}^{a}\right) & =\underline{E}^{b} \cdot \underline{J}^{i a}+j \omega \varepsilon_{c} \underline{E}^{b} \cdot \underline{E}^{a}
\end{aligned}
$$

Also,

$$
\begin{aligned}
\nabla \times \underline{E}^{b} & =-\underline{M}^{i b}-j \omega \mu \underline{H}^{b} \\
\underline{H}^{a} \cdot\left(\nabla \times \underline{E}^{b}\right) & =-\underline{H}^{a} \cdot \underline{M}^{i b}-j \omega \mu \underline{H}^{a} \cdot \underline{H}^{b}
\end{aligned}
$$

Subtract:

$$
\begin{aligned}
\underline{E}^{b} \cdot\left(\nabla \times \underline{H}^{a}\right)-\underline{H}^{a} \cdot\left(\nabla \times \underline{E}^{b}\right) & =\underline{E}^{b} \cdot \underline{J}^{i a}+j \omega \varepsilon_{c} \underline{E}^{b} \cdot \underline{E}^{a} \\
& +\underline{H}^{a} \cdot \underline{M}^{i b}+j \omega \mu \underline{H}^{a} \cdot \underline{H}^{b}
\end{aligned}
$$

Reciprocity Theorem (cont.)

Vector identity:

$$
\nabla \cdot\left(\underline{H}^{a} \times \underline{E}^{b}\right)=\underline{E}^{b} \cdot\left(\nabla \times \underline{H}^{a}\right)-\underline{H}^{a} \cdot\left(\nabla \times \underline{E}^{b}\right)
$$

Hence,

$$
\begin{aligned}
\nabla \cdot\left(\underline{H}^{a} \times \underline{E}^{b}\right) & =\underline{E}^{b} \cdot \underline{J}^{i a}+j \omega \varepsilon_{c} \underline{E}^{b} \cdot \underline{E}^{a} \\
& +\underline{H}^{a} \cdot \underline{M}^{i b}+j \omega \mu \underline{H}^{a} \cdot \underline{H}^{b}
\end{aligned}
$$

From duality (or repeating derivation using Faraday's Law for "a" and Ampere's Law for " b ") we have:

$$
\begin{aligned}
-\nabla \cdot\left(\underline{E}^{a} \times \underline{H}^{b}\right)= & \underline{H}^{b} \cdot \underline{M}^{i a}+j \omega \mu \underline{H^{b}} \cdot \underline{H}^{a} \\
& +\underline{E}^{a} \cdot \underline{J}^{i b}+j \omega \varepsilon_{c} \underline{E}^{a} \cdot \underline{E}^{b}
\end{aligned}
$$

Reciprocity Theorem (cont.)

$$
\begin{aligned}
\nabla \cdot\left(\underline{H}^{a} \times \underline{E}^{b}\right)= & \underline{E}^{b} \cdot \underline{J}^{i a}+j \omega \varepsilon_{c} \underline{E}^{b} \cdot \underline{E}^{a} \\
& +\underline{H}^{a} \cdot \underline{M}^{i b}+j \omega \mu \underline{H^{a}} \cdot \underline{H}^{b} \\
-\nabla \cdot\left(\underline{E}^{a} \times \underline{H}^{b}\right)= & \underline{H}^{b} \cdot \underline{M}^{i a}+j \omega \mu \underline{H^{b}} \cdot \underline{H}^{a} \\
& +\underline{E}^{a} \cdot \underline{J}^{i b}+j \omega \varepsilon_{c} \underline{E}^{a} \cdot \underline{E}^{b}
\end{aligned}
$$

Multiply first equation by -1 and then add:

$$
\begin{aligned}
-\nabla \cdot\left(\underline{H}^{a} \times \underline{E}^{b}\right)-\nabla \cdot\left(\underline{E}^{a} \times \underline{H}^{b}\right)= & -\underline{E}^{b} \cdot \underline{J}^{i a}-\underline{H}^{a} \cdot \underline{M}^{i b} \\
& +\underline{H}^{b} \cdot \underline{M}^{i a}+\underline{E}^{a} \cdot \underline{J}^{i b}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Reciprocity Theoren (cont.) } \\
& -\nabla \cdot\left(\underline{H}^{a} \times \underline{E}^{b}\right)-\nabla \cdot\left(\underline{E}^{a} \times \underline{H}^{b}\right)= \\
& -\underline{E}^{b} \cdot \underline{J}^{i a}-\underline{H}^{a} \cdot \underline{M}^{i b} \\
& \\
& +\underline{H}^{b} \cdot \underline{M}^{i a}+\underline{E}^{a} \cdot \underline{J}^{i b}
\end{aligned}
$$

Reversing the order of the cross products in the first term on the LHS,

$$
\begin{aligned}
\nabla \cdot\left(\underline{E}^{b} \times \underline{H}^{a}-\underline{E}^{a} \times \underline{H}^{b}\right)= & \underline{E}^{a} \cdot \underline{J}^{i b}-\underline{H}^{a} \cdot \underline{M}^{i b} \\
& -\underline{E}^{b} \cdot \underline{J}^{i a}+\underline{H}^{b} \cdot \underline{M}^{i a}
\end{aligned}
$$

Next, integrate both sides over an arbitrary volume V and then apply the divergence theorem:

Reciprocity Theorem (cont.)

$$
\begin{aligned}
& \oint_{S}\left(\underline{E}^{b} \times \underline{H}^{a}-\underline{E}^{a} \times \underline{H}^{b}\right) \cdot \underline{\hat{n}} d S \\
& \quad=\int_{V}\left(\underline{E}^{a} \cdot \underline{j}^{j b}-\underline{H}^{a} \cdot \underline{M}^{i b}-\underline{E}^{b} \cdot \underline{J}^{i a}+\underline{H}^{b} \cdot \underline{M}^{i a}\right) d V
\end{aligned}
$$

Now let $S \rightarrow S_{\infty}$
In the far-field, $\quad \underline{H} \sim \frac{1}{\eta}(\underline{\hat{r}} \times \underline{E})$

Hence

$$
\left(\underline{E}^{b} \times \underline{H}^{a}-\underline{E}^{a} \times \underline{H}^{b}\right) \sim \frac{1}{\eta}\left[\underline{E}^{b} \times\left(\underline{\hat{r}} \times \underline{E}^{a}\right)-\underline{E}^{a} \times\left(\underline{\hat{r}} \times \underline{E}^{b}\right)\right]
$$

Reciprocity Theorem (cont.)

$$
\left(\underline{E}^{b} \times \underline{H}^{a}-\underline{E}^{a} \times \underline{H}^{b}\right) \sim \frac{1}{\eta}\left[\underline{E}^{b} \times\left(\underline{\hat{r}} \times \underline{E}^{a}\right)-\underline{E}^{a} \times\left(\underline{\hat{r}} \times \underline{E}^{b}\right)\right]
$$

Now use a vector identity:

$$
\underline{A} \times(\underline{B} \times \underline{C})=(\underline{A} \cdot \underline{C}) \underline{B}-(\underline{A} \cdot \underline{B}) \underline{C}
$$

So,

$$
\begin{aligned}
& \left(\underline{E}^{b} \times \underline{H}^{a}-\underline{E}^{a} \times \underline{H}^{b}\right) \sim \\
& \quad \frac{1}{\eta}\left[\underline{\hat{r}}\left(\underline{E^{b}} \cdot \underline{E}^{a}\right)-\left(\underline{\hat{r}} \cdot \underline{E}^{b}\right) \underline{E}^{a}-\underline{\hat{r}}\left(\underline{\underline{E}}^{a} \cdot \underline{E}^{b}\right)+\left(\underline{\hat{r}} \cdot \underline{E}^{a}\right) \underline{E}^{b}\right] \\
& =\frac{1}{\eta}\left[-\left(\underline{\hat{r}} \cdot \underline{E^{b}}\right) \underline{E}^{a}+\left(\underline{\hat{r}} \cdot \underline{E}^{a}\right) \underline{E^{b}}\right] \\
& =O\left(\frac{1}{r^{3}}\right)
\end{aligned}
$$

Reciprocity Theorem (cont.)

Hence $\quad \oint_{S}\left(\underline{E}^{b} \times \underline{H}^{a}-\underline{E}^{a} \times \underline{H}^{b}\right) \cdot \underline{\hat{n}} d S \rightarrow 0$

Therefore,

$$
\begin{aligned}
& \quad \oint_{S}\left(\underline{E}^{b} \times \underline{H}^{a}-\underline{E}^{a} \times \underline{H}^{b}\right) \cdot \underline{\hat{n}} d S \\
& \quad=\int_{V}\left(\underline{E}^{a} \cdot \underline{J}^{i b}-\underline{H}^{a} \cdot \underline{M}^{i b}-\underline{E}^{b} \cdot \underline{J}^{i a}+\underline{H}^{b} \cdot \underline{M}^{i a}\right) d V \\
& \square \\
& \int_{V}\left(\underline{E}^{a} \cdot \underline{J}^{i b}-\underline{H}^{a} \cdot \underline{M}^{i b}-\underline{E}^{b} \cdot \underline{J}^{i a}+\underline{H}^{b} \cdot \underline{M}^{i a}\right) d V=0
\end{aligned}
$$

Reciprocity Theorem (cont.)

Final form of reciprocity theorem:

$$
\int_{V}\left(\underline{E}^{a} \cdot \underline{J}^{i b}-\underline{H}^{a} \cdot \underline{M}^{i b}\right) d V=\int_{V}\left(\underline{E}^{b} \cdot \underline{J}^{i a}-\underline{H}^{b} \cdot \underline{M}^{i a}\right) d V
$$

LHS: Fields of " a " dotted with the sources of " b "
RHS: Fields of " b " dotted with the sources of " a "

Reciprocity Theorem (cont.)

$$
\int_{V}\left(\underline{E}^{a} \cdot \underline{J}^{i b}-\underline{H}^{a} \cdot \underline{M}^{i b}\right) d V=\int_{V}\left(\underline{E}^{b} \cdot \underline{J}^{i a}-\underline{H}^{b} \cdot \underline{M}^{i a}\right) d V
$$

Define "reactions":

$$
\begin{aligned}
& <a, b>=\int_{V}\left(\underline{E}^{a} \cdot \underline{J}^{i b}-\underline{H}^{a} \cdot \underline{M}^{i b}\right) d V \\
& <b, a>=\int_{V}\left(\underline{E}^{b} \cdot \underline{J}^{i a}-\underline{H}^{b} \cdot \underline{M}^{i a}\right) d V
\end{aligned}
$$

Then

$$
\langle a, b\rangle=\langle b, a\rangle
$$

Extension: Anisotropic Case

$$
\begin{gathered}
\underline{D}=\underline{\underline{\varepsilon}} \cdot \underline{E} \\
\underline{\underline{B}}=\underline{\underline{\mu}} \cdot \underline{\underline{H}} \\
\underline{\underline{\varepsilon}}=\left[\begin{array}{ccc}
\varepsilon_{x x} & \varepsilon_{x y} & \varepsilon_{x z} \\
\varepsilon_{y x} & \varepsilon_{y y} & \varepsilon_{y z} \\
\varepsilon_{z x} & \varepsilon_{z y} & \varepsilon_{z z}
\end{array}\right] \quad \underline{\underline{\mu}}=\left[\begin{array}{lll}
\mu_{x x} & \mu_{x y} & \mu_{x z} \\
\mu_{y x} & \mu_{y y} & \mu_{y z} \\
\mu_{z x} & \mu_{z y} & \mu_{z z}
\end{array}\right]
\end{gathered}
$$

If $\varepsilon_{i j}=\varepsilon_{j i}$ and $\mu_{i j}=\mu_{j i}$ (symmetric matrices) then reciprocity holds. These are called "reciprocal" materials.

"Testing" Current

Some Basic Observations

> To make the reciprocity theorem useful to us, we usually choose the "b" current to be a "testing" current or "measuring" current.
> The "b" current thus allows us to sample a quantity of interest.
> This allows us to determine some property about the quantity of interest, or in some cases, to calculate it (or at least calculate it in a simpler way).

Dipole "Testing" Current

$$
\begin{aligned}
<a, b> & =\int_{V}\left(\underline{E}^{a} \cdot \underline{J}^{i b}-\underline{H}^{a} \cdot M^{i b}\right) d V \\
& =\int_{V}\left(\underline{E}^{a} \cdot \underline{\hat{p}}\right) \delta\left(\underline{r}-\underline{r}_{0}\right) d V \\
& =\underline{\hat{p}} \cdot \underline{E}^{a}\left(\underline{r}_{0}\right) \quad \text { We sample a field component at a point. }
\end{aligned}
$$

Filament "Testing" Current

$$
\begin{aligned}
&<a, b>=\int_{V} \underline{E}^{a} \cdot \underline{J}^{b} d V \\
&=\int_{C} \underline{E}^{a} \cdot \underline{\hat{l}} d l \quad \underline{J}^{b}=\hat{\underline{l}} J_{l}^{b} \\
&=\int_{C} \underline{E}^{a} \cdot d \underline{r} \\
&=V_{A B} \quad \int_{\Delta V} J_{l}^{b} d V=\int_{\Delta S} J_{l}^{b} d S \Delta l=I \Delta \\
&
\end{aligned}
$$

Magnetic Frill "Testing" Current

$$
\begin{aligned}
<a, b> & =\int_{V}-\underline{H}^{a} \cdot \underline{M}^{b} d V \\
& =-K \int_{C} \underline{H}^{a} \cdot \hat{l} d l \\
& =-\int_{C} \underline{H}^{a} \cdot d \underline{r} \quad \begin{array}{l}
\text { Note: } \\
\text { There is no displacement } \\
\text { current through the loop } \\
\text { if it hugs the PEC wire. }
\end{array} \\
& =-I \quad \text { We sample a current on a wire. }
\end{aligned}
$$

Example

Two infinitesimal unit-amplitude electric dipoles

$$
\begin{aligned}
& \hat{\underline{Z}} \quad \underline{\underline{Z}} \quad \underline{J}^{i a}=\underline{\hat{z}} \delta\left(\underline{r}-\underline{r}_{a}\right) \\
& \underline{r}_{a} \\
& \underline{J}^{i b}=\underline{\hat{z}} \delta\left(\underline{r}-\underline{r}_{b}\right) \\
& <a, b>=<b, a\rangle \\
& \int_{V} \underline{E}^{a} \cdot \underline{J}^{b}-\underline{H}^{a} \cdot \underline{M}^{b} d V=\int_{V} \underline{E}^{b} \cdot \underline{J}^{a}-\underline{H}^{b} \cdot \underline{M}^{a} d V \\
& E_{z}^{a}\left(\underline{r}_{b}\right)=E_{z}^{b}\left(\underline{r}_{a}\right)
\end{aligned}
$$

Example

Two infinitesimal unit-amplitude electric dipoles

$$
\begin{aligned}
& \left\{\begin{array}{l}
\underline{\underline{z}} \\
\underline{r}_{a} \quad \rightarrow \underline{r}_{b} \underline{\hat{x}}
\end{array}\right. \\
& \underline{J}^{i a}=\underline{\hat{z}} \delta\left(\underline{r}-\underline{r}_{a}\right) \\
& \underline{J}^{i b}=\underline{\hat{x}} \delta\left(\underline{r}-\underline{r}_{b}\right) \\
& <a, b>=<b, a\rangle \\
& \int_{V} \underline{E}^{a} \cdot \underline{J}^{b}-\underline{H}^{a} \cdot \underline{M}^{b} d V=\int_{V} \underline{E}^{b} \cdot \underline{J}^{a}-\underline{H}^{b} \cdot \underline{M}^{a} d V \\
& E_{x}^{a}\left(\underline{r}_{b}\right)=E_{z}^{b}\left(\underline{r}_{a}\right)
\end{aligned}
$$

Example

The far-field transmit and receive patterns of any antenna are the same.

Transmit

1 [A]

Measure E_{p} (with r fixed)

$$
p=\theta \text { or } \phi
$$

$$
T(\theta, \phi) \equiv E_{p}\left(\underline{r}_{0}\right)
$$

Example (cont.)

$R(\theta, \phi) \equiv V^{P W}$

Example (cont.)

Next, define two sources:

We apply reciprocity between these two sources, keeping the antenna present.
$\underline{J}^{i a}=1[\mathrm{~A}]$ filament

The antenna (and feed wires) is the "body."

Example (cont.)

Note: The black color is used to show where dipole " b " is, even though it is not radiating here.

Example (cont.)

Hence, we have

$$
<a, b>\Gamma(\theta, \boldsymbol{m})
$$

The field \underline{E}^{b} is the field produced by dipole "b" in the far field.

$$
\begin{aligned}
<b, a> & =\int_{V} \underline{E}^{b} \cdot \underline{J}^{i a} d V \\
& =\int_{C} \underline{E}^{b} \cdot \underline{\underline{l}} d l=\int_{C} \underline{E}^{b} \cdot \underline{d r} \\
& =V^{b}
\end{aligned}
$$

The voltage V^{b} is the open-circuit voltage due to a unit-amplitude dipole in the far field.

Note: The black color is used to show where filament " a " is, even though it is not radiating here.

Example (cont.)

As $r \rightarrow \infty$, the incident field from dipole " b " becomes a plane-wave field.

We need to determine the incident field \underline{E} from the dipole:

$$
\begin{array}{ll}
\text { Let } \quad \underline{\hat{p}} \rightarrow \underline{\hat{z}}^{\prime} & \underline{E} \sim \underline{\hat{\theta}}^{\prime}\left(\frac{j \omega \mu_{0}}{4 \pi r}\right) e^{-j k r} \sin \theta^{\prime} \\
\theta^{\prime}=\frac{\pi}{2} & \text { so } \\
& \underline{E} \sim \underline{\theta}^{\prime}\left(\frac{j \omega \mu_{0}}{4 \pi r}\right) e^{-j k r}=-\underline{\hat{p}}\left(\frac{j \omega \mu_{0}}{4 \pi r}\right) e^{-j k r}
\end{array}
$$

Example (cont.)

$$
\text { Define } \quad E_{0} \equiv\left(\frac{-j \omega \mu_{0}}{4 \pi r}\right) e^{-j k r}
$$

$$
r \rightarrow \infty \quad \underline{E} \sim \underline{\hat{p}} E_{0}
$$

Example (cont.)

Hence

$$
\underline{E}^{b, \text { inc }}(0,0,0) \approx E_{0} \underline{\hat{p}}
$$

More generally,

$$
\underline{E}^{b, i n c}(x, y, z) \approx E_{0} \hat{\hat{p}} e^{+j \underline{k} \cdot \underline{r}}
$$

The incident field from the "testing" dipole thus acts as a plane wave polarized in the $\underline{\hat{p}}$ direction, with amplitude E_{0} at the origin.

Hence

$$
\langle b, a\rangle=V^{b}=E_{0} V^{P W}=E_{0} R(\theta, \phi)
$$

Example (cont.)

Summarizing, we have:

$$
\begin{gathered}
<a, b>=T(\theta, \phi) \\
<b, a>=E_{0} R(\theta, \phi)
\end{gathered}
$$

From reciprocity:

$$
<a, b>=<b, a>
$$

so

$$
T(\theta, \phi)=E_{0} R(\theta, \phi)
$$

Example (cont.)

Hence, in summary we have:

$$
T(\theta, \phi)=R(\theta, \phi)\left[\left(\frac{-j \omega \mu_{0}}{4 \pi r}\right) e^{-j k r}\right]
$$

The shape of the far-field transmit and receive patterns are the same.

Example

Reciprocity in circuit theory

$\frac{V_{1}}{I_{21}}=\frac{V_{2}}{I_{12}} \quad \begin{aligned} & I_{21}=\text { current at location } 2 \text { produced by } V_{1} \\ & I_{12}=\text { current at location } 1 \text { produced by } V_{2}\end{aligned}$

Note: If $V_{1}=V_{2}$, then the result becomes $I_{12}=I_{21}$.

Example (cont.)

Magnetic frill modeling of voltage source

K is the amplitude of the magnetic frill current that flows in the positive ϕ direction.

Example (cont.)

The sources (a and b) are the magnetic frills; the "environment" is the circuit.

$$
\begin{aligned}
& \langle a, b\rangle=\int_{V}-\underline{H}^{a} \cdot \underline{M}^{b} d V=-K_{2} \int_{C_{2}} \underline{H}^{a} \cdot \underline{\hat{l}} d l=V_{2} \int_{C_{2}} \underline{H}^{a} \cdot \underline{\hat{l}} d l=V_{2} I_{21} \\
& \left\langle b, a>=\int_{V}-\underline{H}^{b} \cdot \underline{M}^{a} d V=-K_{1} \int_{C_{2}} \underline{H}^{b} \cdot \underline{\underline{l}} d l=V_{1} \int_{C_{1}} \underline{H}^{b} \cdot \underline{\underline{l}} d l=V_{1} I_{12}\right.
\end{aligned}
$$

From reciprocity: $\quad\langle a, b\rangle=\langle b, a\rangle$

Example (cont.)

Hence

$$
V_{2} I_{21}=V_{1} I_{12}
$$

or

$$
\frac{V_{1}}{I_{21}}=\frac{V_{2}}{I_{12}}
$$

