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Reciprocity Theorem 

Note: The same “body” (dielectric or PEC) exists in both cases. 

Consider two sets of sources, radiating in the same environment. 
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,ia iaJ M

,ib ibJ M

Body 

Body 

( ),a aE H

( ),b bE H



Reciprocity Theorem (cont.) 

Subtract: 

Also, 

( )

a ia a
c

b a b ia b a
c

H J j E

E H E J j E E

ωε

ωε

∇× = +

⋅ ∇× = ⋅ + ⋅

( )

b ib b

a b a ib a b

E M j H

H E H M j H H

ωµ

ωµ

∇× = − −

⋅ ∇× = − ⋅ − ⋅

( ) ( )b a a b b ia b a
c

a ib a b

E H H E E J j E E

H M j H H

ωε

ωµ

⋅ ∇× − ⋅ ∇× = ⋅ + ⋅

+ ⋅ + ⋅
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Vector identity: 

Hence, 

( ) ( ) ( )a b b a a bH E E H H E∇ ⋅ × = ⋅ ∇× − ⋅ ∇×

( )a b b ia b a
c

a ib a b

H E E J j E E

H M j H H

ωε

ωµ

∇ ⋅ × = ⋅ + ⋅

+ ⋅ + ⋅

From duality (or repeating derivation using Faraday’s Law for “a” 
and Ampere’s Law for “b”) we have: 

( )a b b ia b a

a ib a b
c

E H H M j H H

E J j E E

ωµ

ωε

−∇ ⋅ × = ⋅ + ⋅

+ ⋅ + ⋅

Reciprocity Theorem (cont.) 
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( )a b b ia b a
c

a ib a b

H E E J j E E

H M j H H

ωε

ωµ

∇ ⋅ × = ⋅ + ⋅

+ ⋅ + ⋅

( )a b b ia b a

a ib a b
c

E H H M j H H

E J j E E

ωµ

ωε

−∇ ⋅ × = ⋅ + ⋅

+ ⋅ + ⋅

Multiply first equation by -1 and then add: 

( ) ( )a b a b b ia a ib

b ia a ib

H E E H E J H M

H M E J

−∇ ⋅ × − ∇ ⋅ × = − ⋅ − ⋅

+ ⋅ + ⋅

Reciprocity Theorem (cont.) 
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Reversing the order of the cross products in the first term on the LHS, 

( ) ( )a b a b b ia a ib

b ia a ib

H E E H E J H M

H M E J

−∇ ⋅ × − ∇ ⋅ × = − ⋅ − ⋅

+ ⋅ + ⋅

( )b a a b a ib a ib

b ia b ia

E H E H E J H M

E J H M

∇ ⋅ × − × = ⋅ − ⋅

− ⋅ + ⋅

Next, integrate both sides over an arbitrary volume V and then apply 
the divergence theorem: 

Reciprocity Theorem (cont.) 
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S  
V  n̂



In the far-field, 

Hence 

ˆ( )

( )

b a a b

S

a ib a ib b ia b ia

V

E H E H n dS

E J H M E J H M dV

× − × ⋅

= ⋅ − ⋅ − ⋅ + ⋅

∫

∫



Now let S →  S∞ 

1 ˆ( )H r E
η

×

1 ˆ ˆ( ) ( ) ( )b a a b b a a bE H E H E r E E r E
η

 × − × × × − × × 

Reciprocity Theorem (cont.) 
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Now use a vector identity: 

So, 
( ) ( ) ( )A B C A C B A B C× × = ⋅ − ⋅

3

( )
1 ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

1 ˆ ˆ( ) ( )

1

b a a b

b a b a a b a b

b a a b

E H E H

r E E r E E r E E r E E

r E E r E E

O
r

η

η

× − ×

 ⋅ − ⋅ − ⋅ + ⋅ 

 = − ⋅ + ⋅ 

 =  
 



1 ˆ ˆ( ) ( ) ( )b a a b b a a bE H E H E r E E r E
η

 × − × × × − × × 

Reciprocity Theorem (cont.) 

cancels 
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Hence 

Therefore, 

ˆ( ) 0b a a b

S

E H E H n dS× − × ⋅ →∫

Reciprocity Theorem (cont.) 

ˆ( )

( )

b a a b

S

a ib a ib b ia b ia

V

E H E H n dS

E J H M E J H M dV

× − × ⋅

= ⋅ − ⋅ − ⋅ + ⋅

∫

∫



( ) 0a ib a ib b ia b ia

V

E J H M E J H M dV⋅ − ⋅ − ⋅ + ⋅ =∫
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Final form of reciprocity theorem: 

( ) ( )a ib a ib b ia b ia

V V

E J H M dV E J H M dV⋅ − ⋅ = ⋅ − ⋅∫ ∫

Reciprocity Theorem (cont.) 

LHS: Fields of “a” dotted with the sources of “b” 

RHS: Fields of “b” dotted with the sources of “a” 
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( ) ( )a ib a ib b ia b ia

V V

E J H M dV E J H M dV⋅ − ⋅ = ⋅ − ⋅∫ ∫

, ( )

, ( )

a ib a ib

V

b ia b ia

V

a b E J H M dV

b a E J H M dV

< > = ⋅ − ⋅

< > = ⋅ − ⋅

∫

∫

Define “reactions”: 

Then , ,a b b a< > = < >

Reciprocity Theorem (cont.) 
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Extension: Anisotropic Case 

If εij = εji and µij = µ ji  (symmetric matrices) then reciprocity holds. 
These are called “reciprocal” materials. 

D E

B H

ε

µ

= ⋅

= ⋅

xx xy xz xx xy xz

yx yy yz yx yy yz

zx zy zz zx zy zz

ε ε ε µ µ µ
ε ε ε ε µ µ µ µ

ε ε ε µ µ µ

   
   = =   
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“Testing” Current 

 To make the reciprocity theorem useful to us, we usually choose the 
“b” current to be a “testing” current or “measuring” current.  

  The “b” current thus allows us to sample a quantity of interest.  

 This allows us to determine some property about the quantity of 
interest, or in some cases, to calculate it (or at least calculate it in a 
simpler way). 
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Some Basic Observations 



Dipole “Testing” Current 

( )
( ) ( )

( )

0

0

,

ˆ

ˆ

a ib a ib

V

a

V
a

a b E J H M dV

E p r r dV

p E r

δ

< > = ⋅ − ⋅

= ⋅ −

= ⋅

∫

∫

a sources 

( )0ˆibJ p r rδ= −

b source 

We sample a field component at a point.  
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( ): rδRecall is a 3 -D delta function.

ibJ s a point dipole



Filament “Testing” Current 

, a b

V

a

C

a

C

AB

a b E J dV

E l dl

E dr

V

< > = ⋅

= ⋅

= ⋅

=

∫

∫

∫



We sample a voltage drop between two points.  
15 

b b
l l

V S

J dV J dS l I l l
∆ ∆

= ∆ = ∆ = ∆∫ ∫

a sources A

B
C 

1 [A] 

b source 

l

V∆

l∆

S∆ = base area

ibJ s a 1A filament

b b
lJ l J= 



Magnetic Frill “Testing” Current 

a sources 

C I 

b source 

A wire is present as part of the "environment." 

We sample a current on a wire.  

1K =

16 

Note:  
There is no displacement 
current through the loop 
if it hugs the PEC wire. 

, a b

V

a

C

a

C

a b H M dV

K H l dl

H dr

I

< > = − ⋅

= − ⋅

= − ⋅

= −

∫

∫

∫



ibM s a 1A filamentary loop



Example 
Two infinitesimal unit-amplitude electric dipoles 

( ) ( )a b
b az zE r E r=

, ,
a b a b b a b a

V V

a b b a

E J H M dV E J H M dV

< > = < >

⋅ − ⋅ = ⋅ − ⋅∫ ∫

ar

ẑ
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( )ˆib
bJ z r rδ= −

( )ˆia
aJ z r rδ= −

br

ẑ



Example 
Two infinitesimal unit-amplitude electric dipoles 

( ) ( )a b
b ax zE r E r=

, ,
a b a b b a b a

V V

a b b a

E J H M dV E J H M dV

< > = < >

⋅ − ⋅ = ⋅ − ⋅∫ ∫

ar

ẑ

br
x̂

18 

( )ˆib
bJ x r rδ= −

( )ˆia
aJ z r rδ= −



Example 
The far-field transmit and receive patterns of any antenna are the same. 

0( , ) ( )pT E rθ φ ≡

Transmit 

r  

0r

0( )pE r

Measure Ep (with r fixed) 

p θ φ= or
1 [A] 

θ 
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Example (cont.) 

( , ) PWR Vθ φ ≡

Receive 

p̂

ˆi j k rE p e+ ⋅=

 - 
VPW 

+ 

θ 

0 ˆ ˆ ˆsin cos sin sin cosk k x y zθ φ θ φ θ = + + 

20 

A unit-strength plane wave is incident. 



ˆ  ibJ p= dipole in direction

Example (cont.) 

Next, define two sources: 

The antenna (and feed wires) is the “body.” 

1Il =

iaJ C 

θ 

We apply reciprocity between these two 
sources, keeping the antenna present. 

21 

[ ]1 AiaJ = filament

ˆ ˆp̂ θ φ= or



0

0

,

ˆ ( )

( )

a ib

V

a

V
a
p

a b E J dV

E p r r dV

E r

δ

< > = ⋅

 = ⋅ − 

=

∫

∫

Example (cont.) 

The antenna is the “body.” 

The field Ea is the field 
produced by the 1[A] 
feed current exciting 

the antenna. 
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Note: The black color is used to show where dipole “b” is, even though it is not radiating here. 

1Il =

iaJ C 

θ 

1 [A] 

aE



Hence, we have 

( ), ,a b T θ φ< > =

Example (cont.) 

23 



,

ˆ

b ia

V

b b

C C
b

b a E J dV

E l dl E dr

V

< > = ⋅

= ⋅ = ⋅

=

∫

∫ ∫

The voltage Vb is the open-circuit voltage due to a unit-amplitude dipole 
in the far field.  

Example (cont.) 
The field Eb is the field produced 

by dipole “b” in the far field. 
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Note: The black color is used to show where filament “a” is, even though it is not radiating here. 

1Il =

θ 

bE
bV

+ 

- 
Dipole “b” 



As r → ∞, the incident field from dipole “b” becomes a plane-wave field. 

We need to determine the incident field E from the dipole: 

Let ˆ ˆp z′→ 0ˆ~ sin
4

jkrjE e
r

ωµθ θ
π

− ′ ′ 
 

2
πθ ′ = 0 0ˆ ˆ~

4 4
jkr jkrj jE e p e

r r
ωµ ωµθ
π π

− −   ′ = −   
   

so 

Example (cont.) 

r 
Ep̂ θ ' 

z' 
Local coordinates (for dipole “b”) 
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Define 0
0 4

jkrjE e
r

ωµ
π

−− ≡  
 

Example (cont.) 

0ˆ~E p Er → ∞
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r 
Ep̂ θ ' 

z' 
Local coordinates (for dipole “b”) 



( ),
0 ˆ0,0,0b incE E p≈

Hence 

More generally,                                                   
( ),

0 ˆ, ,b inc j k rE x y z E p e+ ⋅≈

Hence 

0 0, ( , )b PWb a V E V E R θ φ= = =

Example (cont.) 

The incident field from the “testing” dipole thus acts as a plane 
wave polarized in the    direction, with amplitude E0  at the origin. p̂

27 



From reciprocity: 

0, ( , )b a E R θ φ< > =

, ,a b b a< > =< >

( ) 0, ( , )T E Rθ φ θ φ=
so 

Example (cont.) 

( ), ,a b T θ φ< > =

Summarizing, we have: 
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( ) 0, ( , )
4

jkrjT R e
r

ωµθ φ θ φ
π

− −  =     

Example (cont.) 
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Hence, in summary we have: 

The shape of the far-field transmit and receive patterns are the same.  



Reciprocity in circuit theory 

Example 

1 2

21 12

V V
I I

=
I21 = current at location 2 produced by V1  

I12 = current at location 1 produced by V2 

V1 

+ - 

+ - V2 

I21 I12 Point 1 Point 2 

Note: If V1 = V2, then the result becomes I12 = I21. 
30 



Example (cont.) 

K + - 

V 

Magnetic frill modeling of voltage source 

31 

K is the amplitude of the magnetic frill current that flows in the positive φ direction.   

Msφ 

( )
( )

s zM E V z

K z
φ δ

δ

= = −

=

K V= −

( )zE V zδ= −

z 



Example (cont.) 

2 2

2 1

2 2 2 21

1 1 1 12

,

,

a b a a

V C C

b a b b

V C C

a b H M dV K H l dl V H l dl V I

b a H M dV K H l dl V H l dl V I

< > = − ⋅ = − ⋅ = ⋅ =

< > = − ⋅ = − ⋅ = ⋅ =

∫ ∫ ∫

∫ ∫ ∫

 

 

, ,a b b a< > = < >From reciprocity: 

K1 = -V1 

I21 I12 

K2 = -V2 
C1 C2 

a b 

32 

The sources (a and b) are the magnetic frills; the “environment” is the circuit. 



Example (cont.) 

2 21 1 12V I V I=

1 2

21 12

V V
I I

=

Hence 

or 
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