

NAME: _____

ECE 6340
Fall 2010

EXAM I

INSTRUCTIONS:

This exam is open-book and open-notes. You may use any material or calculator that you wish. Laptops or other devices that may be used to communicate are not allowed.

- Put all of your answers in terms of the parameters given in the problems, unless otherwise noted.
- Include units with all answers in order to receive full credit.
- Please write all of your work on the sheets attached (if you need more room, you may write on the backs of the pages)

Please show *all of your work* and *write neatly* in order to receive credit.

Problem 1 (40 pts)

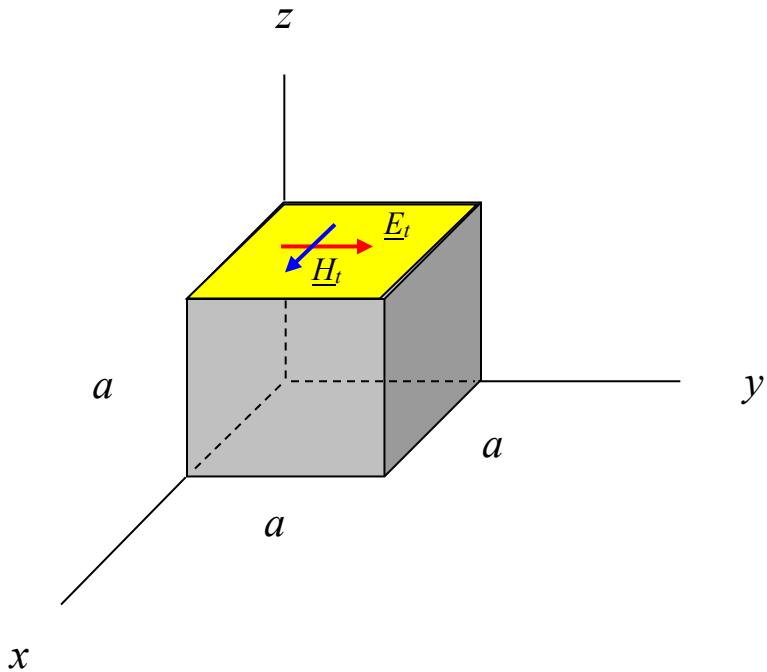
A cube consists of perfect conductor on all faces except the top face ($z = a$). On the top face the tangential electric and magnetic fields (the x and y components) at a frequency ω are given by

$$E_y = \sin\left(\frac{\pi x}{a}\right)$$

$$H_x = (A - jB)\sin\left(\frac{\pi x}{a}\right),$$

where A and B are positive real numbers. The cube is filled with a homogeneous lossy material having $\epsilon_c = \epsilon' - j\epsilon''$.

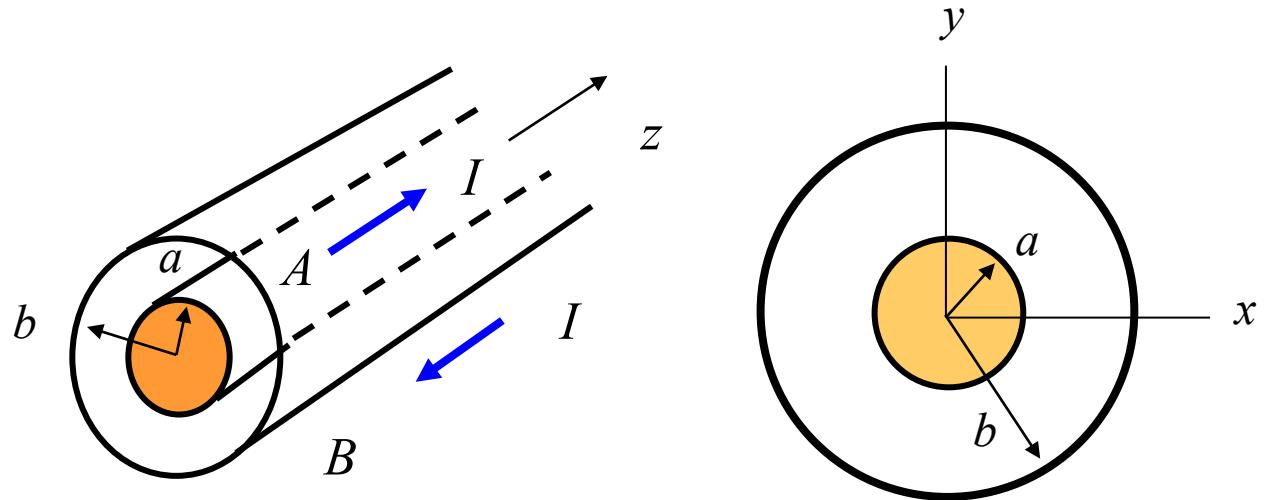
- Determine the time-average power being dissipated inside the cube due to material losses, in terms of the parameters given above.
- Assume that the electric field inside the cube has only a y component and this component is a linear function of z , varying from zero at the bottom of the cube ($z = 0$) to the value that is given above at the top face ($z = a$). Determine the value of ϵ'' for the material, in terms of the parameters given above.



ROOM FOR WORK

Problem 2 (30 pts)

An air-filled coaxial cable is shown below.



Assume that the electric field of a TEM mode propagating in the z direction is described in the cross-sectional $z = 0$ plane by the function

$$\underline{E}(\rho) = \hat{\rho} E_0 \left(\frac{1}{\rho} \right),$$

for some constant E_0 .

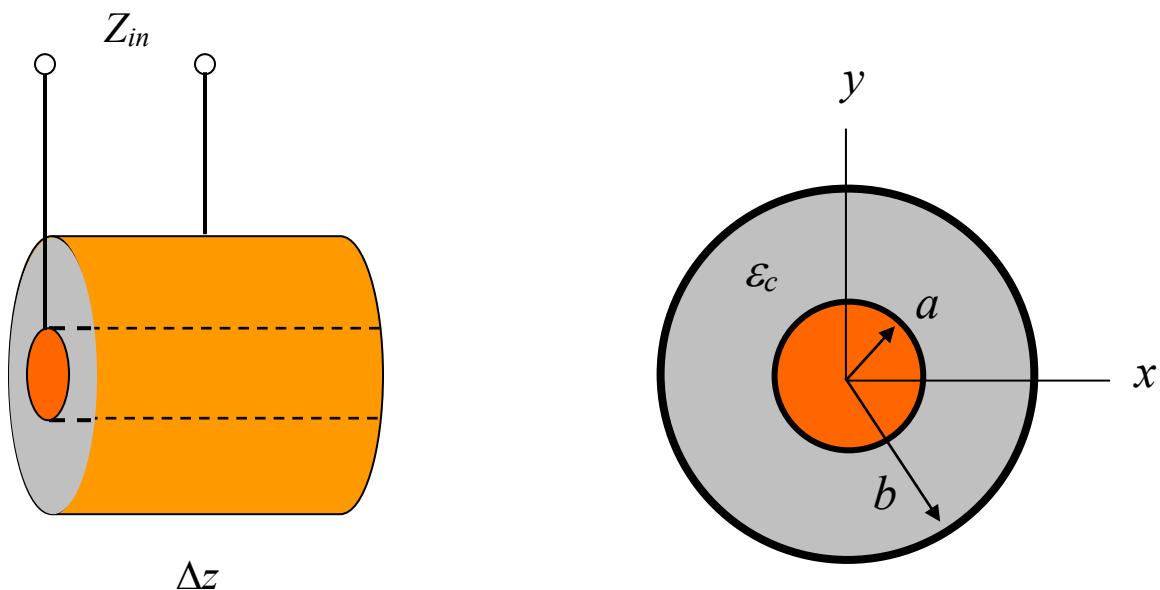
Determine the time-average pressure (force per unit area) on the outer shield of the coax for this mode. For convenience, you may determine the pressure at $\phi = 0$ (i.e., $x = b$, $y = 0$), since the pressure is independent of the angle ϕ .

ROOM FOR WORK

Problem 3 (30 pts)

A coaxial cable is filled with a lossy dielectric material having $\epsilon_c = \epsilon' - j\epsilon''$. An engineer takes a small length Δz of the cable and measures the input impedance Z_{in} seen between the inner and outer conductors at a frequency ω . For this small length of line it may be assumed that there is no z variation of the fields and that the structure is simply acting as a lossy capacitor.

Derive a formula for the propagation constant γ at the frequency ω in terms of Z_{in} , Δz , and the dimensions of a coax. It may be assumed that the lossy dielectric material filling the coax is nonmagnetic. Assume that R (the resistance per unit length of the line) is small enough to be neglected.

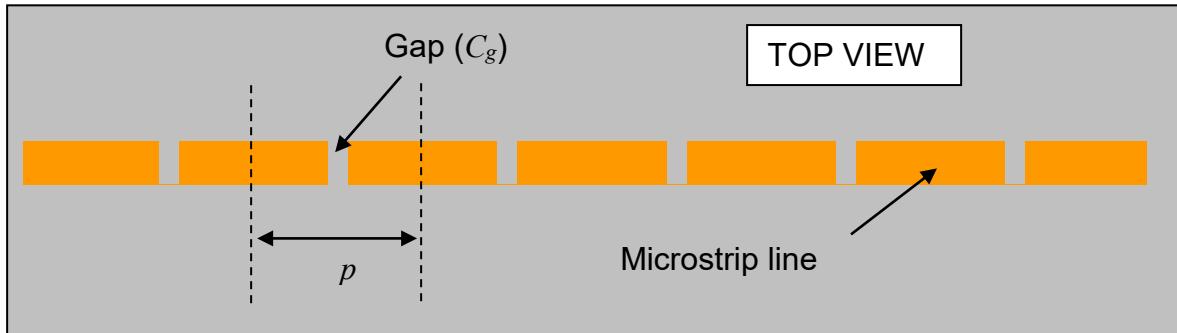


ROOM FOR WORK

Problem 4 (30 pts)

A lossless microstrip line has a characteristic impedance of Z_0^M and a wavenumber of k_z^M . A periodic set of gaps is placed along the line as shown in the figure below, where the period p is much smaller than a guided wavelength. Each gap has a capacitance of C_g .

- (a) Derive a formula for the wavenumber k_z of the structure. The result should be in terms of Z_0^M , k_z^M , C_g , and p .
- (b) Make a sketch of what α and β look like vs. frequency ω . The sketch should label the values of any important frequencies such as where α or β go to zero, and well as the value of α or β at zero frequency. The slope of α or β at high frequency should be indicated as well.



ROOM FOR WORK