

NAME: _____

ECE 6340
Fall 2010

EXAM I

INSTRUCTIONS:

This exam is open-book and open-notes. You may use any material or calculator that you wish. Laptops or other devices that may be used to communicate are not allowed.

- Put all of your answers in terms of the parameters given in the problems, unless otherwise noted.
- Include units with all answers in order to receive full credit.
- Please write all of your work on the sheets attached (if you need more room, you may write on the backs of the pages)

Please show *all of your work* and *write neatly* in order to receive credit.

Problem 1 (40 pts)

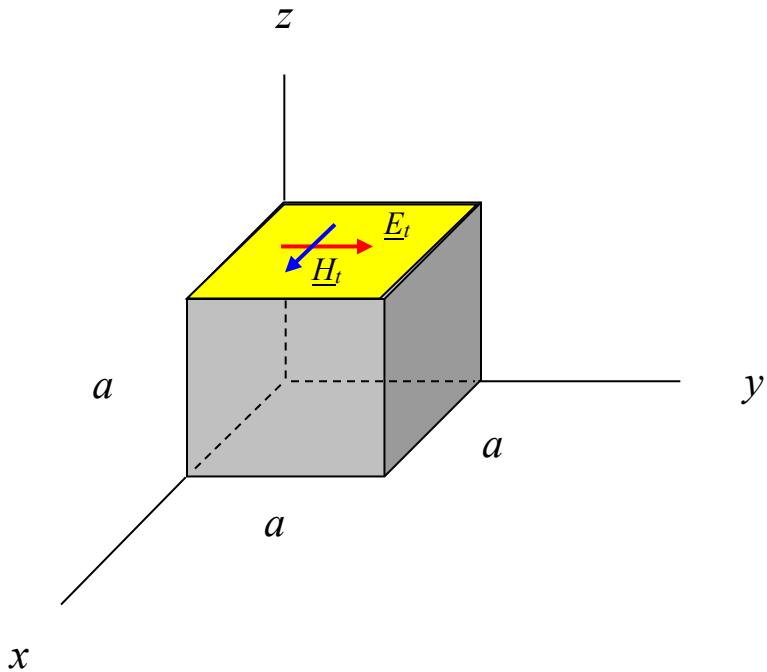
A cube consists of perfect conductor on all faces except the top face ($z = a$). On the top face the tangential electric and magnetic fields (the x and y components) at a frequency ω are given by

$$E_y = \sin\left(\frac{\pi x}{a}\right)$$

$$H_x = (A - jB)\sin\left(\frac{\pi x}{a}\right),$$

where A and B are positive real numbers. The cube is filled with a homogeneous lossy material having $\epsilon_c = \epsilon' - j\epsilon''$.

- Determine the time-average power being dissipated inside the cube due to material losses, in terms of the parameters given above.
- Assume that the electric field inside the cube has only a y component and this component is a linear function of z , varying from zero at the bottom of the cube ($z = 0$) to the value that is given above at the top face ($z = a$). Determine the value of ϵ'' for the material, in terms of the parameters given above.



ROOM FOR WORK

Part (a)

$$\begin{aligned}\langle \mathcal{P}_d \rangle &= \operatorname{Re} \int_{\text{top}} S_z dx dy = \frac{1}{2} \operatorname{Re} \iint_{0 0}^a a E_y H_x dx dy = \frac{1}{2} \operatorname{Re} \iint_{0 0}^a (A + jB) \sin^2 \left(\frac{\pi x}{a} \right) dx dy \\ &= \frac{1}{2} A \left(\frac{a^2}{2} \right)\end{aligned}$$

Hence,

$$\langle \mathcal{P}_d \rangle = \left(\frac{a^2}{4} \right) A.$$

Part (b)

$$E_y = \left(\frac{z}{a} \right) \sin \left(\frac{\pi x}{a} \right).$$

Hence,

$$\begin{aligned}\langle \mathcal{P}_d \rangle &= \frac{1}{2} (\omega \varepsilon'') \iint_V |E|^2 dV \\ &= \frac{1}{2} (\omega \varepsilon'') \iint_{0 0 0}^a \left[\left(\frac{z}{a} \right) \sin \left(\frac{\pi x}{a} \right) \right]^2 dx dy dz \\ &= \frac{1}{2} (\omega \varepsilon'') \left(\frac{a^2}{2} \right) \iint_0^a \left(\frac{z}{a} \right)^2 dz \\ &= \frac{1}{2} (\omega \varepsilon'') \left(\frac{a^2}{2} \right) \left(\frac{a}{3} \right) \\ &= (\omega \varepsilon'') \left(\frac{a^3}{12} \right).\end{aligned}$$

Equating the two formulas for the time-average power dissipation gives

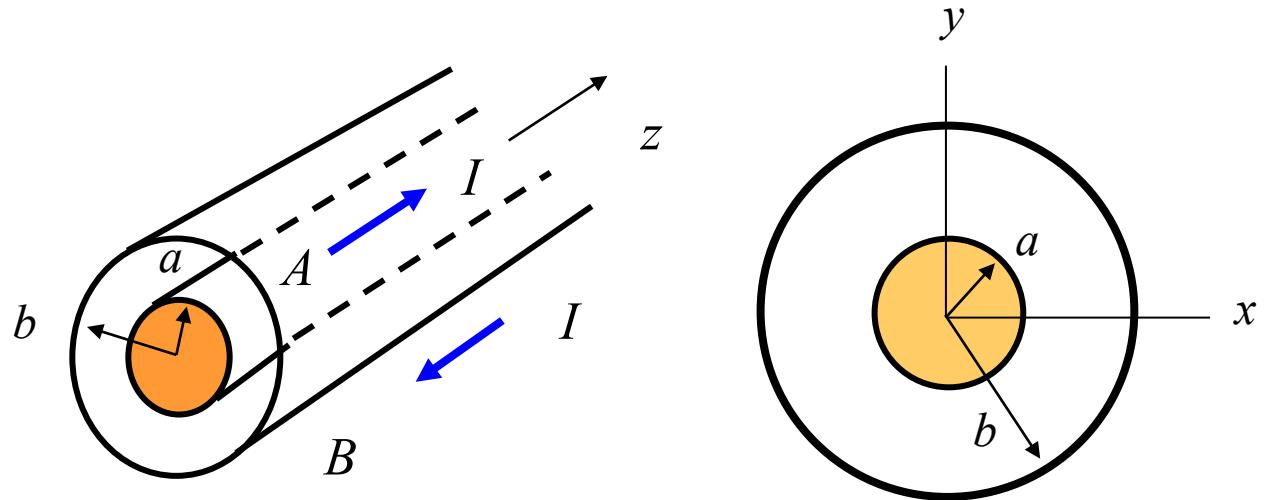
$$\left(\frac{a^2}{4} \right) A = (\omega \varepsilon'') \left(\frac{a^3}{12} \right)$$

So that

$$\varepsilon'' = \frac{3A}{\omega a}.$$

Problem 2 (30 pts)

An air-filled coaxial cable is shown below.



Assume that the electric field of a TEM mode propagating in the z direction is described in the cross-sectional $z = 0$ plane by the function

$$\underline{E}(\rho) = \hat{\rho} E_0 \left(\frac{1}{\rho} \right),$$

for some constant E_0 .

Determine the time-average pressure (force per unit area) on the outer shield of the coax for this mode. For convenience, you may determine the pressure at $\phi = 0$ (i.e., $x = b$, $y = 0$), since the pressure is independent of the angle ϕ .

ROOM FOR WORK

The magnetic field is given by

$$\underline{H}(\rho) = \frac{1}{\eta} (\hat{z} \times \underline{E}) = \hat{\phi} \frac{1}{\eta} \left(\frac{E_0}{\rho} \right).$$

The Maxwell stress tensor is

$$T_{ij} = \epsilon_0 \mathcal{E}_i \mathcal{E}_j + \mu_0 \mathcal{H}_i \mathcal{H}_j - \delta_{ij} \left(\frac{1}{2} \epsilon_0 |\mathcal{E}|^2 + \frac{1}{2} \mu_0 |\mathcal{H}|^2 \right).$$

At $\phi = 0$ we have

$$\underline{E} = \hat{x} \left(\frac{E_0}{b} \right)$$

$$\underline{H} = \hat{y} \left(\frac{E_0}{\eta b} \right).$$

The outward pressure is given by - T_{xx} .

We have

$$T_{xx} = \epsilon_0 \mathcal{E}_x^2 - \left(\frac{1}{2} \epsilon_0 |\mathcal{E}|^2 + \frac{1}{2} \mu_0 |\mathcal{H}|^2 \right) = \frac{1}{2} \epsilon_0 |\mathcal{E}|^2 - \frac{1}{2} \mu_0 |\mathcal{H}|^2.$$

The time-average is

$$\langle T_{xx} \rangle = \frac{1}{4} \epsilon_0 |E_x|^2 - \frac{1}{4} \mu_0 |H_y|^2.$$

We then have

$$\langle T_{xx} \rangle = \frac{1}{4} \epsilon_0 \left(\frac{E_0}{b} \right)^2 - \frac{1}{4} \mu_0 \left(\frac{E_0}{\eta_0 b} \right)^2 = \left(\frac{E_0}{2b} \right)^2 \left(\epsilon_0 - \frac{\mu_0}{\eta_0^2} \right) = \left(\frac{E_0}{2b} \right)^2 (\epsilon_0 - \epsilon_0) = 0$$

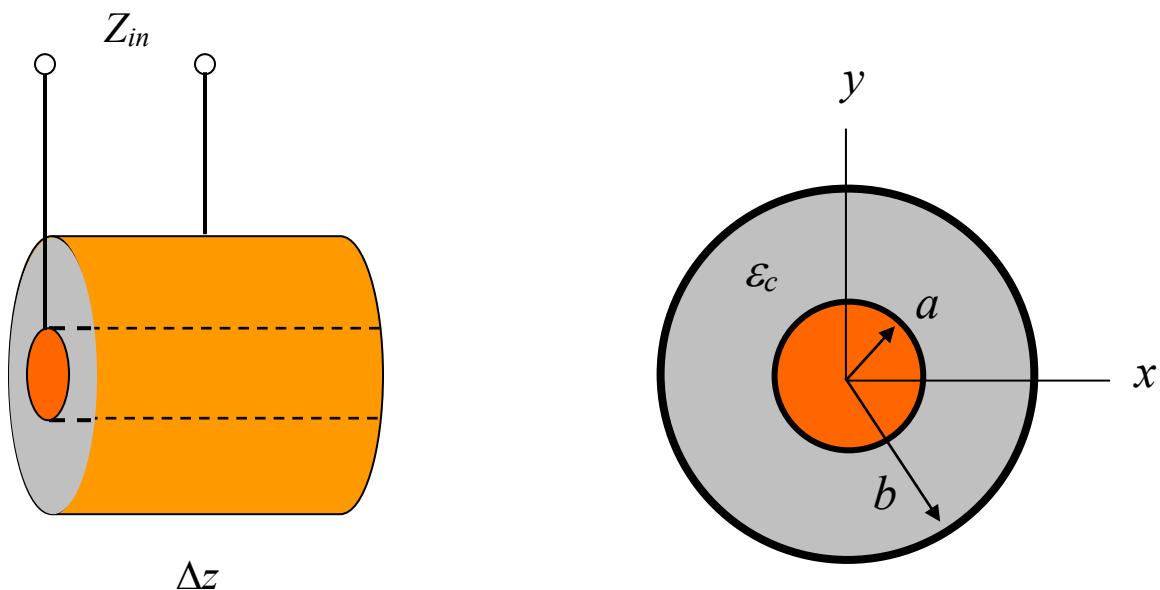
Hence the pressure is zero.

From a photon point of view, the photons travel straight down the cable, and do not reflect from the shield, and hence give no force to the shield.

Problem 3 (30 pts)

A coaxial cable is filled with a lossy dielectric material having $\epsilon_c = \epsilon' - j\epsilon''$. An engineer takes a small length Δz of the cable and measures the input impedance Z_{in} seen between the inner and outer conductors at a frequency ω . For this small length of line it may be assumed that there is no z variation of the fields and that the structure is simply acting as a lossy capacitor.

Derive a formula for the propagation constant γ at the frequency ω in terms of Z_{in} , Δz , and the dimensions of a coax. It may be assumed that the lossy dielectric material filling the coax is nonmagnetic. Assume that R (the resistance per unit length of the line) is small enough to be neglected.



ROOM FOR WORK

The propagation constant is

$$\gamma = jk_z = jk = j\omega\sqrt{\mu_0\epsilon_c}.$$

The input admittance when the line is air filled is

$$Y_{in}^0 = \frac{1}{Z_{in}^0} = j\omega C_0 \Delta z = j\omega \Delta z \left[\frac{2\pi\epsilon_0}{\ln\left(\frac{b}{a}\right)} \right].$$

When it is filled with the lossy material it is

$$Y_{in}^0 = j\omega \Delta z \left[\frac{2\pi\epsilon_c}{\ln\left(\frac{b}{a}\right)} \right].$$

Hence we have that

$$\epsilon_c = \epsilon' - j\epsilon'' = \frac{1}{j\omega Z_{in} \Delta z 2\pi} \ln\left(\frac{b}{a}\right).$$

Hence,

$$\gamma = j\omega \sqrt{\mu_0 \frac{1}{j\omega Z_{in} \Delta z 2\pi} \ln\left(\frac{b}{a}\right)}.$$

Another approach:

$$\gamma = \sqrt{(j\omega L)(G + j\omega C)}.$$

Also, we have

$$Z_{in} = \frac{1}{(G + j\omega C)\Delta z}.$$

Therefore we have

$$(G + j\omega C) = \frac{1}{Z_{in} \Delta z}$$

Hence we have

$$\gamma = \sqrt{(j\omega L) \frac{1}{Z_{in} \Delta z}}.$$

Substituting for L , we have

$$\gamma = \sqrt{j\omega \left(\frac{\mu_0}{2\pi} \ln \left(\frac{b}{a} \right) \right) \left(\frac{1}{Z_{in} \Delta z} \right)}$$

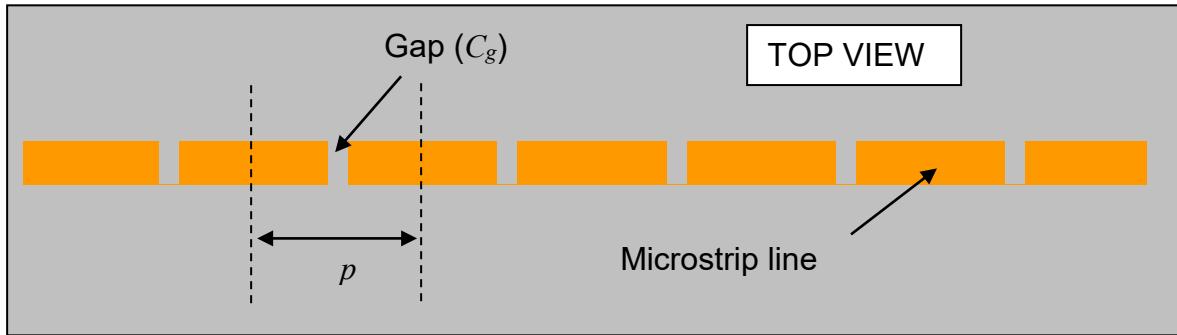
or

$$\gamma = j\omega \sqrt{\frac{1}{j\omega} \left(\frac{\mu_0}{2\pi} \ln \left(\frac{b}{a} \right) \right) \left(\frac{1}{Z_{in} \Delta z} \right)}.$$

Problem 4 (30 pts)

A lossless microstrip line has a characteristic impedance of Z_0^M and a wavenumber of k_z^M . A periodic set of gaps is placed along the line as shown in the figure below, where the period p is much smaller than a guided wavelength. Each gap has a capacitance of C_g .

- (a) Derive a formula for the wavenumber k_z of the structure. The result should be in terms of Z_0^M , k_z^M , C_g , and p .
- (b) Make a sketch of what α and β look like vs. frequency ω . The sketch should label the values of any important frequencies such as where α or β go to zero, and well as the value of α or β at zero frequency. The slope of α or β at high frequency should be indicated as well.



ROOM FOR WORK

Part (a)

The capacitance and inductance per unit length are given by

$$Z_0^M = \sqrt{\frac{L}{C}}$$

$$k_z^M = \omega \sqrt{LC}$$

so that

$$L = \frac{k_z^M Z_0^M}{\omega}$$

$$C = \frac{k_z^M}{\omega Z_0^M}.$$

We then have

$$Z = j\omega L + \frac{1}{p} \left(\frac{1}{j\omega C_g} \right)$$

and

$$Y = j\omega C.$$

Hence we have

$$\gamma = \alpha + j\beta = \sqrt{\left(j\omega L + \frac{1}{j\omega p C_g} \right) (j\omega C)}$$

or

$$\gamma = \alpha + j\beta = j\omega \sqrt{LC} \sqrt{1 - \frac{1}{\omega^2 LC_g p}}.$$

Define

$$\omega_c = \frac{1}{\sqrt{pLC_g}}.$$

Then we have

$$\gamma = \alpha + j\beta = j\omega\sqrt{LC} \sqrt{1 - \frac{\omega_c^2}{\omega^2}}.$$

Part (b)

From the propagation constant we have the following results:

$$\omega < \omega_c : \alpha = \omega\sqrt{LC} \sqrt{\frac{\omega_c^2}{\omega^2} - 1}, \quad \beta = 0$$

$$\omega > \omega_c : \beta = \omega\sqrt{LC} \sqrt{1 - \frac{\omega_c^2}{\omega^2}}, \quad \alpha = 0$$

