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¢ In this set of notes we introduce the Spectral Domain Immitance (SDI) method, which is a
powerful method for solving for the fields due to sources inside of layered media.

* The basic idea is developed here by decomposing a finite current sheet (e.g. a patch
antenna) into a set of infinite phased current sheets.

» The fields are found from an infinite phased current sheet.

» The fields from the infinite current sheets are added together (spectral integration) to
recover the fields of the finite current sheet.



The SDI method is a powerful and systematic method for analyzing
sources and structures in layered media.

Electric or magnetic dipole sources within layered media.

Microstrip and printed antennas.

Phased arrays, FSS structures, periodic leaky-wave antennas.

Geophysical problems.

The method was originally developed by Itoh and Menzel in the early 1980s.



» We initially consider a planar source inside of a layered structure. (The method can be
extended to include vertical sources as well.)

» The figure shows a single layer, but the method works for any number of layers.
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Note: The layer structure is infinite horizontally.
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Introduce Fourier transform pair: J (kx,ky) = j I J (x,7) g/h+i) dxdy
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Considering the integrals as limits of sums, we can write:
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Then we have: J ) ( X, y) — Z i ‘ilmn e—J(kmekyny)

m=—0o0 N=—0o0

The finite-size current sheet is thus expressed as a superposition of infinite phased current sheets.



We can write this as
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Infinite phased current sheet




Consider a single sheet of current of the form:

J! (x,p) = Lfye )

The zero subscript means “at the origin.”
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The superscript p denotes
“phased current sheet.”

TM_ +TE,
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We wish to determine the amplitude of the plane waves that this current source launches,

and the field at any point inside the structure.

New Notation:

J!(x,y)=J"(x,p)

‘Ifo:A

—mn

e—j(kxx+kyy) _ —j(kxmx+kwy)

Note: TM, and TE, waves reflect from the boundaries and remain TM_ and TE_, respectively.




The current sheet launches a pair of plane waves that propagate up and down.

Top view

TM_+TE,

JI(x,y)

(k. x+k y)

J7 (x,9)=J0 e

The “t” subscript means “transverse” (perpendicular)
to the z direction (i.e., horizontal).

10



The upward-going TM_ plane wave inside the layer is shown here.

3D view
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Top view
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The “f” subscript means “transverse” (perpendicular)

to the z direction (i.e., horizontal).
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Denote:
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These unit vectors depend on

the values of (k,, k).
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For the TM_ plane wave, we then have:

E =uk,
H =VH,
y F_[z kt
L,
) Do

The “f” subscript means “transverse:

(perpendicular) to the z direction.

13



The upward-going TE, plane wave is polarized as shown here.
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The wave impedances are defined for waves traveling upward” (in the net +z direction).
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*This is analogous to
how Z, is defined for a
transmission line.
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Consider the plane waves that gets launched by the current sheet:

Z

T
TM+TE, s J7 (x,)
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We wish to use a TEN model to find the plane-wave field inside the layered structure.
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We introduce the following modeling equations:

VTM (Z) - EuO (Z) = Eu (09 O)Z) E (X,yaZ) = (Z)e_j(kxx+kyy)

ITM (Z) — HVO (Z) = Hv (O, sz) [—[v (x,y,z) — Hvo (Z)e—j(kxx+kyy)

The zero subscript indicates that the field has

the exponential phase term suppressed. ?

™ (Z) ZlTM

Source 4@7
Note that the voltage (tangential electric field) +

must be continuous at the source location, so
the source model is a parallel element.
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TEN model

17



We introduce similar modeling equations for the TE_ case:

VT (2)=~E,, (z) = —E, (0,0,2)

1" (z)=H,,(z)=H,(0,0,z)

Source 4@7

yE (Z)

Y Do

TEN model
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Denote

™ TE

J(x,)=J" (x,py)+J) (x,p)

™

The TM surface current is that part of the total surface
current that launches only a TM, plane wave, while the
TE current launches only a TE_ plane wave.

I (x,y)= QX(ETTM (x,2,0)-H, (x,y,O))

:gx(ﬁff(x y,O) vH (x,y,O))

:—Q( H (x,y,0)-H, (x,y,O))

The source is assumed
tobe atz=0.

——ie ) (H(0,0,0)- H; (0,0,0))

— 5 e—j(kxﬁkyy) (]TM (O+ ) _ ™ (O— ))

- e—j(kxx+kyy) 7™

Conclusion: The current that launches the TM_ plane wave is polarized in the u direction.




Hence lfTM (x,y) = (Q'lf (X,J/))

Similarly, J? (x,y)=9 (54! (x.y))

I (x,9)=J" (x,3)+J" (%)
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We can now determine the source amplitude in the TEN model:

Recall: J? v (x,y)=—1 e_j(k"x+kyy)[3M

™ A p j(kxx+k y)
SO IS —zls (x’y)e Y
or [TM ——5.J° The zero subscript indicates that the current
s = =0 has the exponential phase term suppressed.
Similarly,

21



The TEN models are shown below.
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T J(x,)
> A > X
g =2.1 g, h
Assume Jp (x y) xe —Jko(x+) k. =k,
k, =k,

Find E,(x,y) for z>0

Note: If we wanted to find £, we would need to find the transverse magnetic field first, and then apply
Ampere’s law.
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In this example we have
k. =k,
ky =k,

The unit vectors are

|
[

<>
I

INB
X

|5
|l

24



A A —'k + A
. )ejo(x y)V

— Jjko (x+y)

[<>

=—sing, e

1 e_jko (x+y)

|
<>

y Y. u
A =48
A
)

. —)

J
J! () =g

25



For the sources we have:

™ _ 7P A Recall:
]S __lso.%

S A =k (x+
=—%-1 J! (x,p)=ge o)
=—cosq,, ) .

1 =50 (an/)—l

J2

"} A
- u
TE _ 7P A Y
Is _iSO v
=XV
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]TM — _L T
) J2 1 Z, z (TM_or TE,)
T
1 1 2 |
S 2 ~ IT P
S k.o :(kg _ko2 _k(?) =—Jjk,
T 1/2 1/2
h Z, ky=(k k2 k)" = (kF —2k2) " = ke, -1
T denotes TM or TE
Z(;fM — kzO
Ve,
T Ty 7T
From TL theory, Z. = Zo | jZ, tan(kz1h) Zm k.,
e,
ZTE _ WU,
YAVART(N, Sk
Z-T:]OIan(zl) 20
" Z, +jZ, tan(k_h) A
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Vi oy=z1'

m s

z 2> |
0 y! (2) = y! (0) g k0
— Z-T]Te_jkzoz
Hence
VTM (Z) — Z-TM]TMe_jk 0Z
oy [_ 1 j e
n \/E

Therefore,

£ (0,0,2)= Z™ (_Lj _

(TM,or TE))

vty

Z,

] ~ {
—/ ]ST

h ZlT

T denotes TM or TE
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Similarly,

Therefore,
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We then have:

E,(x,y,z)=1 {ZTM (_%j
1

where
7T _ jZ()TZlT tan(k_ /)

" 7T+ jZT tan(k,, )

with

1/2

ko= (K =k -k2) " == jk,

k Z(klz_kg_koz)l/zzko —

zl )

e —Jjko (x+Y) :|

— jk_oz
+ v |:_ZTE (_ - —szoze—jko (x+y)
J2 j
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The infinite current sheet produces a field v (Z) v (Z)

—Jl ke x+k,
E’ (x,y)=Ehe ") e Z\"

1[A] L[A]
Erpo =uk 0T ﬁEvO ZlTM ZlTE
=V "™(z)+ \_3(—VTE (z)) ! ! '
— Q V;TM (Z) [_lfo ) uAj| + ﬁ(_V;TE (Z)) |:+lf‘90 . {}:| The Michalski fu:::)t?g;s are calculated

by using only transmission line theory
(no EM calculations).

The “i” subscript on the voltage functions denotes the voltage due to a one-Amp parallel current source.




Recall that

1 -
lfo = 1—4mn = (272_)2 'ls (kxm’

Hence, from the last slide we have:

Bl = ip™ (z){

where
i =ik, k,)
p=v(k,,.k,)

k,, ) Ak Ak,

1

(27)

o 7, (kuk,, )-ﬁ]AkxAky}

! T, (K, )3 AkxAky}
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Adding the contributions from all the phased current sheets, we have:

1
E,(x,y)=

(27)

2
m

We then take the limit as

E (x,y)=

2V () (-, (kyok,, ) 1) |

V(L (k) 5)

Ak_— dk,
Ak, > dk,

OV ()(L, (koK )0

e_j(kxmx+kyny> Akx Aky

V™ (2) (=, (kk,)-0)

e ) ke dk,
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From this we can identify:

E,(kk,.z)=aV™ (@) (=L, @)-3V" (2)(
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Similarly, we have:

H, (kk,.z) =3 VM (@)=L, -a)+ 2V, (2)(, D)

Taking the u and v components, we have:

H, =1"()(-J,

| <>

4 )

i-H,=1"(2)(+J, )

—t

<>

From this we can make the following TEN identifications:
™()=%-H, (k. k,,z)  I™@)=-i-J,(k,.k,)
I"(z)=a-H, (k. k,z) 1=, (k.k,)



The TEN models are shown below.
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(A summary for modeling the transform of the field.)

™ (z)=d-E, (k. k,.2) A A
™(z)=v-H, (kx’ky’z) ;
I™(z)=—i-J, (k. k) R
P (2)=—v- E, (kx,ky,z> k, (k..k,)
]TE<Z>:Q.Et<kx,ky,Z) i

I (z)=v-J,(k,.k,) = :

¢ The angle of propagation in the horizontal plane is denoted as a

0 This is also the angle in the spectral wavenumber plane.

37



Spectral-Domain Green’s Function

» Assume an x-directed surface current /..

» Assume that we wish to find E..

Goal: Find E,

This is the most useful case for the rectangular microstrip antenna.
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This is a typical “spectral-domain calculation.”
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Define:
éxx (kx’ky’z)z_[%j TM(Z) ( j VTE(Z)

Then This is the “xx component of the
spectral-domain Green’s function.”

Taking the inverse transform, we have:

+00 +00

)T, (kok, )e ") gk dk,

—00 —00

40



The spectral-domain Green’s function is the
Fourier transform of the space-domain Green’s function.

To see this:

E_= j j G, (x—x,y—yz,2")J (x,y)dx dy

—00 —00

=G, *J, (2D convolution)

The space-domain Green’s function G_ (x, y; z, z’) is the field E (x, y, z) due to a unit-amplitude
dipole located at (0, 0, z').

~

From the convolution property of Fourier transforms: E_ = F{G }j

XX SX

Hence éxx :F{Gxx}
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More generally,

Ex . Gxx Xy Jsx
_Ey _ > ny _ _JSJ’ _

The other three components can be found in a similar manner:

~

G,.G,,G

Yy

Note : ny = ny from reciprocity.



(Summary for the E, field from an x-directed electric current.)

where

G, (k,k,,z)=- [k—] VFM<z>+(],‘;—y] V™ (2)

Taking the inverse transform, we have:

1 ffc; (ko ko 2) T (Kok, e ) gk

E = >
(27) 2.
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The TEN models are shown below.

Vi (2) AdE
t .t R
Z1 ZITE
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¢ ¢ Ay
ZOTM _ﬂ 7 TE WH,
WE, 0 k.,
7™ _& ZTE _ WH,
1 W&, 1 k_,
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