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In this set of notes we apply the SDI method to investigate the fields produced by a patch current.

s We calculate the field due to a rectangular patch on top of a substrate.
 We examine the pole and branch point singularities in the complex plane.

 We examine the path of integration in the complex plane.
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Note: The origin is at the center of the patch.
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From Notes 22 we have:
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For the patch current, we have:
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From the TEN we have:

T T ZOT Y™ = )
77 (0) = () Z(0) O T
| . V0) -
- i YlTM _ We
Y, (0) ’—@—‘ k.,
1 1 Amp v kg

= : h Y —_z
Yy —jY" cot(k.h) - T o

1

k
YTE — z1
T denotes TM or TE (TM. or TE) : om

1/2
ko = (K — k)
1/2 K2 = (k> + k2 12
k., = (klz —kf) ! _( « y) (The branch choice for k_, is arbitrary.)

z1

Note: For k,, we choose a positive real number or a negative imaginary number: k_, = —j«/kt2 — k02 (works for any k,)



Define the denominator term as:

D' (k,) =Y, (0)

so that

D™ (k) = 1, = ™ cot (K h)
D™ (k) =X, — %™ cot(k.h)



We then have:

The final form of the electric field at the interface is then:
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Use the following change of variables: y
dk, dk, = k, dk,d ¢ %
(k, is also often called £ ) ¢ k.
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Advantage of polar coordinates: The poles and branch points are located at a fixed position in the

complex £, plane.
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Hence, we have:
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This is in the following general form:
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Poles occur when either of the following conditions are satisfied:

D™(k)=0 (k =k)
D™(k)=0 (k =k

TM_:
D™ =0
= Y™ - %™ cot (k. h)=0
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This equation coincides with the well-known Transverse Resonance Equation (TRE) in microwave
engineering for determining the characteristic equation of a guided mode (e.g, TM, SW mode).

() (o) (0)=r(0)
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Comparison:

Poles in k, plane

Y, - jY, ™ cot(k,h)=0
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TRE (surface-wave mode)

Y, - jY, ™ cot(k,h)=0
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z0
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kzO - _]\/ﬂ"l%Mo _k(?

k. = (k12 = IB%MO )1/2

(A similar comparison holds for the TE case.)
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Hence, we have the conclusion that

™
kz‘p :ﬂTM
TE
ktp :ﬂTE

That is, the poles are located at the wavenumbers of the gquided modes (the surface-wave modes).

Note: In most practical substrate cases, there is only a single TM, surface-wave mode.
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The complex plane thus has poles on the real axis at the wavenumbers of the surface waves.

Imk, I =(k2—|—k2)1/2
_IBTMO /BTMO
| %— —X | Rek,
_kl _kO kO kl
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The path avoids the poles by going above them.

Rek

Imk,
Lossy case
C
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Imk,
Lossy case

This rectangular path can be used for
numerical computation.
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The path avoids the poles by going above them.

Imk,
Lossless case
LR
i '—I C
Ao —¢ : Rek,
k, k,
h, =0.05k,
Practical note:

LR :kl (1- 1) If /2, is too small, we are too close to the pole. If 4, is too large, there is too much round-off

error due to exponential growth in the sin and cos functions.

(typical choices)
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To explain why we have branch points, consider the TM function:

D™ (k)=Y™ - j¥™ cot(k.,h) :[‘Z‘%j_ j(a:l ]cot(kzlh)

If kZO — _kZO

z0

z1

There are no branch cuts for £,
(the function D™ is an even function of «_,).

Note:

D™ (k,) changes

(We need branch cuts for £ _,.)
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Note:

The representation of the square root of —1

as —j is arbitrary here.
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. 1/2
kzo =] (kt _kO )1/2 (kf _(_kO)) ¢1:Arg(kt _ko)

=ik =k e = (k)| €7 e 4, = Arg (k= ()

Branch cuts are necessary to prevent the angles from changing by 27 :

Note:
The shape of the branch cuts is arbitrary, but
vertical cuts are shown here.

Rek

Note:
The branch cuts should not cross the real axis when there is
loss in the air and the branch points move off of the real axis
(the integrand must be continuous).




kzo :_j\/ kt _k0| \/

We obtain the correct signs for k_, if we choose the following branches:

kt _(_ko )| e/h/? git!2

- /2< Arg (kt - ko) <37/2 The wave is then either decaying or outgoing in

the air region when we are on the real axis.
3r/2< Arg(kt —(—ko)) <m/2

Im kt ¢1:Arg(kt _ko)

kzO =—j(+) kZO =t =—Jj(+) ¢, = Arg(kt _(_ko))
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The wavenumber £, is then uniquely defined everywhere in the complex plane:

ko =ik~ k| |/

k —(—k0)| o/h/2 pit 2

—r/2<¢ <37m/2
Br/2<¢,<7m/2

Example Imk,
$ =097 b =n/4 ¢,=Arg(k, —k, )
¢, =—-Sr/4 ¢, =017 ¢, = Arg(kt _(_ko))
©) (©)
Rek
—k, ko. t
(0]
¢1=1.17Z ¢1:_7Z'/4
¢, =-37/4 ¢, =—0.1x




“ The Riemann surface is a pair of complex planes, connected by “ramps” (where the branch
cuts used to be).

% The angles (and hence the function) change continuously over the surface.

% All possible values of the function are found on the surface.
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Riemann surface for z!/2

Top sheet Y .
z=re’”
—T<P< 7 /r<‘
¢
A Top view

MATLAB: —7<¢@¢<r

Note: A horizontal branch cut has been arbitrarily chosen.

A “ramp” or “escalator” now exists where the branch cut used to be.
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Riemann Surface (cont.)
Riemann surface for z!/2

: X
3D view Top

Bottom

Side view Top view
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The Riemann surface can be constructed for the wavenumber function:

koo =(k2—k2) " == (k, —ky)" (k,— (k)"

Imk

30°

45°

Example:

We go counter-clockwise around the branch point at k,. We start on the top sheet
on the real axis and end up back where we started but on the bottom sheet.
We track the point shown below (red dot).

Top sheet

¢ =r/4
¢, =7/6

Rek

Bottom sheet
g =n/4+2x
¢, =7m/6
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Sommerfeld branch cuts are a convenient choice for theoretical purposes
(discussed more in ECE 6341 and ECE 6382):

Im(k,,)=0 on branch cut

ko=(k2-k2)" Im£k,

k., = —j(kt —k, )1/2 (kt —(—ko ))1/2 Im (kZO) < (0 (everywhere in complex plane)

s 0 0\ Rek,

Assume: ¢ = 0, ¢, =0 = k ,=—j(+)

This defines k,, everywhere on the Riemann surface.
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kzo ==] Y kt2 _kg

Note: Reﬁz 0

Im#k

Im(k_,)<0  (everywhere in complex plane)

Rek,
— kO ko
k, € branch cut < z =k’ —k; = negative real number
(The Sommerfeld branch cuts are the mapping of the k., is real here on the real axis, for a lossless air.
negative real axis in the mapping below.)
—k, <k, <k,

szf —ko2

If we give the air a small amount of loss, we can simply check to make sure that Im(k,,) <0.

Practical note:

Note: The branch points move off of the axes for a lossy air.
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The Riemann surface with Sommerfeld branch cuts.

Imk, Im(k_)<0 (top sheet)

Im(k_,) >0 (bottom sheet)

—=——4 Rek,
_ko :— ko
|
|
|

Note: Surface wave poles must lie on the top sheet, and leaky-wave poles must lie on the bottom sheet.
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mk, Im (k) <0

Top sheet
LR /

|

|

|

' >—| C
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ky Boo K t
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ktpw (bottom sheet)
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