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ECE 6345 
Spring 2024 

 
Homework 5 

 
 

1) A rectangular microstrip antenna is printed on a lossless substrate having a substrate relative 
permittivity rε = 2.2. The aspect ratio of the patch is / 1.5W L = . The antenna is operated at 
the resonant frequency (assume that fringing may be ignored, so the length of the patch is 
one-half of a wavelength in the dielectric). Plot the exact Qsp versus the normalized substrate 
thickness 0/h λ  over the range 00 / 0.1h λ< < . On the same graph, add a plot of the CAD 
result for Qsp (which involves the CAD formula for p). The exact Qsp is based on the exact 
Psp, which comes from the exact p factor (which must be found from a double integration in 
θ  and φ), and also the exact dip

spP  (which comes from a single integration in θ).  

Repeat for a substrate relative permittivity of 10.8. 

 

2) Consider the rectangular patch of Prob. 1. Plot the exact directivity (dB) versus the 
normalized substrate thickness 0/h λ  over the range 00 / 0.1h λ< < . On the same graph, add 
a plot of the CAD formula for the directivity (which uses the CAD formula for p). The exact 
directivity will involve the exact p (which involves a double integration in θ  and φ) as well 
as the exact directivity of the dipole, which involves the exact power density radiated at 
broadside by the dipole and the exact space-wave power radiated by the dipole (which comes 
from a single integration in θ).  

Repeat for a substrate relative permittivity of 10.8. 

 

3) A circular microstrip antenna is printed on a lossless substrate having a substrate relative 
permittivity rε = 2.2. The antenna is operated at the resonance frequency of the TM011 mode. 
Ignore fringing, so that 

1 11 1.84118k a x′= =  (and therefore 00.29303 / ra λ ε= ).  

Plot the exact Qsp versus the normalized substrate thickness 0/h λ  over the range  

00 / 0.1h λ< < . On the same graph, add a plot of the CAD formula for Qsp (which uses the 
CAD formula for cp ). The exact Qsp for the circular patch will use the exact cp , which will 
involve a single numerical integration in θ. 
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Repeat for a substrate relative permittivity of 10.8. 

 

4) Consider the circular patch of Prob. 3. Plot the exact directivity (dB) versus the normalized 
substrate thickness 0/h λ  over the range 00 / 0.1h λ< < . On the same graph, add a plot of the 
CAD formula for the directivity (which uses the CAD formula for cp ). The exact directivity  
for the circular patch will use the exact cp , which will involve a single numerical integration 
in θ. 

Repeat for a substrate relative permittivity of 10.8. 

 

5) Consider the same patch as in Prob. 1. Plot the exact surface-wave radiation efficiency of the 
patch, together with the CAD formula for the surface-wave radiation efficiency of the patch. 
(In the CAD formula, the surface-wave efficiency of the patch is taken to be the same as that 
of the infinitesimal dipole.) For the exact radiation efficiency of the patch, use the two paths 
shown on slide 12 of Notes 24 to calculate the space-wave power and the total radiated 
(space-wave + surface-wave) power. Plot versus the normalized thickness of the substrate  

0/h λ  over the range 00 / 0.1h λ< < . (Note: The surface-wave radiation efficiency sw
re is the 

radiation efficiency that accounts only for surface-wave loss, and not conductor or dielectric 
loss.)  

Repeat for a substrate relative permittivity of 10.8. 

 

6) Repeat the previous problem, but now take the patch to be very small (to model an 
infinitesimal dipole), with 00.01L W λ= = .  You are now comparing the exact surface-wave 
radiation efficiency of a dipole with the CAD formula for the surface-wave radiation 
efficiency of the dipole.  

Make plots for  a substrate permittivity of  2.2 and 10.8. 

 

Helpful Integration Tips 

In Probs. 5 and 6 you will need to integrate a function in the complex plane along a straight line 
path. (The straight line path could be any one of the three line segments that make up the 
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rectangular red path shown on slide 12 of Notes 24, or it could be the blue path shown on slide 
12 of Notes 22.) 

Consider a general integral along a straight line path in the complex plane from a complex point 
a to another complex point b, of the form 

( )
b

a

I f z dz= ∫ , (1) 

where f is a complex function of the complex variable z. (Note that the complex variable z here 
in this general notation will really be your complex variable tk .) 

We can use the following parameterization: 

( ) , 0 1z a b a t t= + − ≤ ≤ , (2) 

where t is a real variable that goes from zero to one. Note that 

dz b a
dt

= − . (3) 

We then use a change of variables from the complex z variable to the real t variable, by using 

( )( )
1

0

dzI f z t dt
dt

 =  
 ∫ , (4) 

so that 

( ) ( )
1

0

I b a F t dt= − ∫ , (5) 

where 

( ) ( )( )F t f z t≡ . (6) 

The integral in Eq. (5) is along the real axis from 0t =  to 1t = . You can use any integration 
scheme that you wish to do this integration, including letting MATLAB do it for you.  

Note that F is a complex function of the real variable t. If you wish, you can also write the 
integral as 

( ) ( )( ) ( ) ( )( )
1 1

0 0

Re ImI b a F t dt j b a F t dt= − + −∫ ∫ . (7) 

In this form, we only need to numerically integrate two real-valued functions (one is ( )( )Re F t  
and the other is ( )( )Im F t . This splitting of the integral in Eq. (5) into two parts would only be 
necessary if your numerical integration scheme cannot handle a complex function.  


