ECE 6382

Fall 2023

Homework Set \#1

Homework problems are from Mathematical Methods for Physicists, $7^{\text {th }}$ Ed., by Arfken, Weber, and Harris.

Chapter 1, Section 8, Complex Numbers and Functions

Prob. 1.8.1
Prob. 1.8.3(a)
Prob. 1.8.6(b) (first part only, for $|\sin z|$)
Prob. 1.8.7(b) (first part only, for $|\sinh z|)$ (Please see note 1.)
Prob. 1.8.10
Prob. 1.8.11

Chapter 11, Section 2, Cauchy-Riemann Equations

Prob. 11.2.1
Prob. 11.2.3 (Please see note 2.)
Prob. 11.2.7 (Please see note 3.)
Prob. 11.2.11 (Please see note 4.)

NOTES

Note 1: Please note the misprint in part (b): $|\cosh z|^{2}=\cosh ^{2} x-\sin ^{2} y$.

Note 2: As a hint, note that if we know $d f / d x$, we can write $f(x)=\int\left(\frac{d f}{d x}\right) d x+C$, where C is a constant. Generalizing this to a function of two variables, if we know $\partial u(x, y) / \partial x$ we can write $u(x, y)=\int\left(\frac{\partial u(x, y)}{\partial x}\right) d x+g(y)$, where $g(y)$ is an arbitrary function of y. In your answers, remember to include any constants that are allowed to be there!

Note 3: Note that $d z=d r e^{i \theta}$ if r changes with θ fixed, and $d z=d \theta\left(i r e^{i \theta}\right)$ if θ changes with r fixed. You will also need to use the product rule for derivatives to see how $R(r, \theta) e^{\Theta(r, \theta)}$ varies when both r and θ change independently.

Note 4: Please note the misprint: $u(x, v)$ should be $u(x, y)$.

